Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CSC570 Lecture 09

CSC570 Lecture 09

Applied Affective Computing
Face-Based Emotion Recognition
(202305)

More Decks by Javier Gonzalez-Sanchez

Other Decks in Research

Transcript

  1. Dr. Javier Gonzalez-Sanchez [email protected] www.javiergs.info o ffi ce: 14 -227

    CSC 570 Current Topics in Computer Science Applied Affective Computing Lecture 09. Gestures and Posture
  2. Facial Action Coding System (FACS) Bre a king down f

    a ci a l expressions into individu a l muscle movements, c a lled " a ction units" th a t c a n be combined to cre a te a wide r a nge of f a ci a l expressions. Facial Ac ti on Coding System, 46 ac ti ons (plus head movements). 6
  3. Face 11 (Ekman and Friesen 1978) Facial Action Coding System,

    46 actions (plus head movements). (update 2022) 19 Lip Corner Depressor 26 Jaw Drop 27 Mouth Stretch
  4. 13

  5. 15

  6. 16 AU10 Upper Lip Raiser AU17 Chin Raiser AU15 Lip

    Corner Depressor AU17 Chin Raiser
  7. Face 19 30 frames per second 10 inferences per second

    600 values per minute 36,000 values per hour
  8. Emotion Recognition 21 Ali Raza Shahid, Sheheryar Khan, Hong Yan.

    Contour and region harmonic features for sub-local facial expression recognition. Journal of Visual Communication and Image Representation. Volume 73. 2020. doi.org/10.1016/j.jvcir.2020.102949.
  9. Face 28 Timestamp Agreement Concentrating Disagreement Interested Thinking Unsure 101116112838516

    0.001836032 0.999917 1.79E-04 0.16485406 0.57114255 0.04595062 101116112838578 0.001447654 0.9999516 1.29E-04 0.16310683 0.5958921 0.042706452 101116112838672 5.97E-04 0 1.5E-04 0.44996294 0.45527613 0.00789697 101116112838766 2.46E-04 0 1.75E-04 0.77445686 0.32144752 0.001418217 101116112838860 1.01E-04 0 2.04E-04 0.93511915 0.21167138 2.53E-04 101116112838953 4.18E-05 0 2.38E-04 0.983739 0.13208677 4.52E-05 101116112839016 1.72E-05 0 2.78E-04 0.9960774 0.07941038 8.07E-06 101116112839110 7.1E-06 0 3.24E-04 0.99906266 0.046613157 1.44E-06 101116112839156 2.92E-06 0 3.77E-04 0.99977654 0.026964737 2.57E-07 101116112839250 1.21E-06 0 4.4E-04 0.9999467 0.015464196 4.58E-08 101116112839391 4.97E-07 0 5.12E-04 0.9999873 0.008824189 8.18E-09 101116112839438 2.05E-07 0 5.97E-04 0.999997 0.005020725 1.46E-09 101116112839547 8.43E-08 0 6.96E-04 0.9999993 0.002851939 2.6E-10 101116112839578 3.47E-08 0 8.11E-04 0.9999999 0.001618473 4.64E-11 101116112839688 1.43E-08 0 9.45E-04 0.99999994 9.18E-04 8.29E-12 101116112839781 5.9E-09 0 0.001101404 1 5.21E-04 1.48E-12 101116112839828 2.43E-09 0 0.001283521 1 2.95E-04 2.64E-13
  10. Embodiment • Inter a ction th a t involves the

    whole body a s a medium for eng a gement with digit a l environments. • Theoretic a l b a sis: physic a l sp a ce, a nd soci a l context in sh a ping hum a n inter a ctions • Immersive Computing, (VR/AR) - users feel fully present • A ff ective Computing - Physical actions c a n gener a te emotion a l st a tes; f a ci a l expressions can enh a nce soci a l a nd emotion a l eng a gement also • The Sensorimotor Loop: body’s movement provides feedback that shapes perception and decision-making. 30
  11. Body Tracking (Estimation) • Met a Quest devices do not

    h a ve built-in full-body tr a cking, but Met a introduced AI- b a sed body tr a cking solutions. • Upper-Body Estim a tion: Using h a nd tr a cking + he a d movement, the system infers the position of shoulders, elbows, a nd torso. • Inverse Kinem a tics (IK): AI predicts the position of hidden body p a rts (like elbows) b a sed on h a nd a nd he a d movement p a tterns. • VR a pplic a tions use IK models to simul a te full-body motion with limited tr a cking points. 31
  12. Body Tracking (Estimation) • No direct leg tr a cking

    (lower-body movements a re not n a tively c a ptured). • Uses AI inference to a pproxim a te w a lking a nd sitting poses. • Some VR a pps require extern a l tr a ckers (like Vive tr a ckers) or Kinect-like c a mer a s for full-body motion. • Extern a l a ccessories: w a ist a nd foot sensors for more precise tr a cking. 32
  13. MQTT Data { “leftEye”:{"x":-0.4216550588607788,"y":0.8787311911582947,"z":-0.00456150621175766}, “rightEye":{"x":-0.3755757808685303,"y":0.8756504058837891,"z":0.04438880831003189}, “leftEyeGaze":{"x":0.050619591027498248,"y":-0.0809454470872879,"z":0.9954323172569275}, “rightEyeGaze":{"x":0.050619591027498248,"y":-0.0809454470872879,"z":0.9954323172569275}, “eyeFixationPoint":{"x":0.11886614561080933,"y":-0.13097167015075684,"z":2.974684476852417}, “leftHand”:{"x":0.0,"y":0.0,"z":0.0}, "rightHand":{"x":0.0,"y":0.0,"z":0.0},

    “cube":{"x":-0.5114021897315979,"y":1.5798050165176392,"z":0.024640535935759546}, “head":{"x":-0.7167978286743164,"y":0.8024232983589172,"z":0.17002606391906739}, “torso":{"x":-0.6404322385787964,"y":0.5270168781280518,"z":0.035430606454610828}, “leftFoot":{"x":-0.8061407804489136,"y":-0.16039752960205079,"z":0.25339341163635256}, “rightFoot":{"x":-0.5946151614189148,"y":-0.15849697589874268,"z":0.33175137639045718}, “hips":{"x":-0.6485552787780762,"y":0.33673161268234255,"z":0.0795457512140274}, “leftArmUp":{"x":-0.8079588413238525,"y":0.7046946287155151,"z":0.0354776531457901}, “lefArmLow":{"x":-0.6874216794967651,"y":0.5375530123710632,"z":-0.05098365247249603}, “rightArmUp":{"x":-0.5440698266029358,"y":0.7054383754730225,"z":0.16330549120903016}, “rightArmLow":{"x":-0.6227755546569824,"y":0.5135259032249451,"z":0.2464602291584015}, “leftWrist":{"x":-0.5440698266029358,"y":0.7054383754730225,"z":0.16330549120903016}, “rightWrist":{"x":-0.6227755546569824,"y":0.5135259032249451,"z":0.2464602291584015} } 34
  14. Body Input Action on a Java Swing Application 35 •Look

    left Move the circle left • Look right Move the circle right • Look up Move the circle up • Look down Move the circle down • Raise left hand Change circle color to red (e.g., “select”) • Raise right hand Change circle color to blue (e.g., “highlight”) • Lean forward (bend down) Shrink the circle (closer interaction) • Stand up straight Expand the circle (broader interaction)
  15. CSC 570 Applied Affective Computing Javier Gonzalez-Sanchez, Ph.D. [email protected] Spring

    2025 Copyright. These slides can only be used as study material for the class CSC 570 at Cal Poly. They cannot be distributed or used for another purpose.