Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
May 04, 2012
Programming
21
2.3k
MongoDB for Analytics
Presented at MongoSF on May 4th, 2012.
John Nunemaker
PRO
May 04, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
MongoDB for Analytics
jnunemaker
PRO
11
970
Addicted to Stable
jnunemaker
PRO
32
2.7k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Why NoSQL?
jnunemaker
PRO
10
970
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
1k
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.5k
Other Decks in Programming
See All in Programming
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
320
Swift Concurrency 年表クイズ
omochi
3
230
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
4
510
しっかり学ぶ java.lang.*
nagise
1
300
乱雑なコードの整理から学ぶ設計の初歩
masuda220
PRO
31
11k
Functional Calisthenics in Kotlin: Kotlinで「関数型エクササイズ」を実践しよう
lagenorhynque
0
130
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
180
JJUG CCC 2025 Fall: Virtual Thread Deep Dive
ternbusty
3
310
Verilator + Rust + gRPC と Efinix の RISC-V でAIアクセラレータをAIで作ってる話 RTLを語る会(18) 2025/11/08
ryuz88
0
350
CSC509 Lecture 13
javiergs
PRO
0
250
OSS開発者の憂鬱
yusukebe
11
3.7k
AIを駆使して新しい技術を効率的に理解する方法
nogu66
1
610
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
470k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
670
Git: the NoSQL Database
bkeepers
PRO
432
66k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Making Projects Easy
brettharned
120
6.4k
Practical Orchestrator
shlominoach
190
11k
Scaling GitHub
holman
463
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Why Our Code Smells
bkeepers
PRO
340
57k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
GitHub John Nunemaker MongoSF 2012 May 4, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
None
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
1 year Since public launch
13 tiny servers 2 web, 6 app, 3 db, 2
queue
7-8 Million Page views per day
None
None
None
None
Implementation Imma show you how we do what we do
baby
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoSF 2012 May 4,
2012 @jnunemaker