Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
October 18, 2011
Programming
16
30k
MongoDB for Analytics
Presented at Mongo Chicago 2011.
John Nunemaker
PRO
October 18, 2011
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
MongoDB for Analytics
jnunemaker
PRO
11
920
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
21
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Why NoSQL?
jnunemaker
PRO
10
940
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.4k
I Have No Talent
jnunemaker
PRO
14
960
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
RubyKaigiで得られる10の価値 〜Ruby話を聞くことだけが RubyKaigiじゃない〜
tomohiko9090
0
140
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
240
Perlで痩せる
yuukis
1
680
データベースコネクションプール(DBCP)の変遷と理解
fujikawa8
1
250
UPDATEがシステムを複雑にする? イミュータブルデータモデルのすすめ
shimomura
1
530
GoのWebAssembly活用パターン紹介
syumai
3
10k
Enterprise Web App. Development (2): Version Control Tool Training Ver. 5.1
knakagawa
1
110
TypeScript LSP の今までとこれから
quramy
1
500
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
770
ドメインモデリングにおける抽象の役割、tagless-finalによるDSL構築、そして型安全な最適化
knih
10
1.8k
Cloudflare Realtime と Workers でつくるサーバーレス WebRTC
nekoya3
0
400
事業戦略を理解してソフトウェアを設計する
masuda220
PRO
22
6k
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1031
460k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Optimizing for Happiness
mojombo
379
70k
Embracing the Ebb and Flow
colly
86
4.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Practical Orchestrator
shlominoach
188
11k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Rails Girls Zürich Keynote
gr2m
94
14k
4 Signs Your Business is Dying
shpigford
184
22k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Transcript
Ordered List John Nunemaker MongoChi 2011 October 18, 2011 MongoDB
for Analytics A loving conversation with @jnunemaker
Background As presented through interpretive dance
None
None
None
~1 month Of evenings and weekends
~4 dog years Since public launch
~6 tiny servers 2 web, 2 app, 2 db
~1-2 Million Page views per day
None
None
Implementation Imma show you how we do what we do
baby
Doing It Live No aggregate querying
get('/track.gif') do Hit.record(...) TrackGif end
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{site_id}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth The best laid plans of mice and men
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
Ordered List Thank you!
[email protected]
John Nunemaker MongoChi 2011 October
18, 2011 @jnunemaker