Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
October 18, 2011
Programming
16
30k
MongoDB for Analytics
Presented at Mongo Chicago 2011.
John Nunemaker
PRO
October 18, 2011
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
MongoDB for Analytics
jnunemaker
PRO
11
950
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
21
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Why NoSQL?
jnunemaker
PRO
10
950
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
980
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.5k
Other Decks in Programming
See All in Programming
Claude Codeで実装以外の開発フロー、どこまで自動化できるか?失敗と成功
ndadayo
3
1.7k
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
1
180
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
110
Laravel Boost 超入門
fire_arlo
2
160
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
17
9.4k
TDD 実践ミニトーク
contour_gara
1
260
AIコーディングAgentとの向き合い方
eycjur
0
250
A Gopher's Guide to Vibe Coding
danicat
0
190
旅行プランAIエージェント開発の裏側
ippo012
1
530
Infer入門
riru
4
1.6k
Trem on Rails - Prompt Engineering com Ruby
elainenaomi
1
100
STUNMESH-go: Wireguard NAT穿隧工具的源起與介紹
tjjh89017
0
390
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Statistics for Hackers
jakevdp
799
220k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Unsuck your backbone
ammeep
671
58k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Agile that works and the tools we love
rasmusluckow
330
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Navigating Team Friction
lara
189
15k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
900
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Transcript
Ordered List John Nunemaker MongoChi 2011 October 18, 2011 MongoDB
for Analytics A loving conversation with @jnunemaker
Background As presented through interpretive dance
None
None
None
~1 month Of evenings and weekends
~4 dog years Since public launch
~6 tiny servers 2 web, 2 app, 2 db
~1-2 Million Page views per day
None
None
Implementation Imma show you how we do what we do
baby
Doing It Live No aggregate querying
get('/track.gif') do Hit.record(...) TrackGif end
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{site_id}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth The best laid plans of mice and men
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
Ordered List Thank you!
[email protected]
John Nunemaker MongoChi 2011 October
18, 2011 @jnunemaker