Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
October 18, 2011
Programming
16
30k
MongoDB for Analytics
Presented at Mongo Chicago 2011.
John Nunemaker
PRO
October 18, 2011
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
MongoDB for Analytics
jnunemaker
PRO
11
930
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
21
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
57
9.4k
Why NoSQL?
jnunemaker
PRO
10
940
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.4k
I Have No Talent
jnunemaker
PRO
14
960
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
関数型まつり2025登壇資料「関数プログラミングと再帰」
taisontsukada
2
850
Gleamという選択肢
comamoca
6
760
GoのGenericsによるslice操作との付き合い方
syumai
3
690
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
190
XSLTで作るBrainfuck処理系
makki_d
0
210
NPOでのDevinの活用
codeforeveryone
0
240
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
160
XP, Testing and ninja testing
m_seki
3
190
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
190
Bytecode Manipulation 으로 생산성 높이기
bigstark
2
380
地方に住むエンジニアの残酷な現実とキャリア論
ichimichi
5
1.3k
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
130
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
A Tale of Four Properties
chriscoyier
160
23k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Raft: Consensus for Rubyists
vanstee
140
7k
Building Adaptive Systems
keathley
43
2.6k
Navigating Team Friction
lara
187
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Done Done
chrislema
184
16k
Fireside Chat
paigeccino
37
3.5k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Transcript
Ordered List John Nunemaker MongoChi 2011 October 18, 2011 MongoDB
for Analytics A loving conversation with @jnunemaker
Background As presented through interpretive dance
None
None
None
~1 month Of evenings and weekends
~4 dog years Since public launch
~6 tiny servers 2 web, 2 app, 2 db
~1-2 Million Page views per day
None
None
Implementation Imma show you how we do what we do
baby
Doing It Live No aggregate querying
get('/track.gif') do Hit.record(...) TrackGif end
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{site_id}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth The best laid plans of mice and men
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
Ordered List Thank you!
[email protected]
John Nunemaker MongoChi 2011 October
18, 2011 @jnunemaker