Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
November 13, 2012
Programming
11
910
MongoDB for Analytics
Presented at MongoChicago on November 13, 2012.
John Nunemaker
PRO
November 13, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.2k
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
21
2.2k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Why NoSQL?
jnunemaker
PRO
10
930
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.4k
I Have No Talent
jnunemaker
PRO
14
960
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
REST API設計の実践 – ベストプラクティスとその落とし穴
kentaroutakeda
2
260
マテリアルって何者?RealityKitで扱うマテリアル入門
nao_randd
0
130
AIエージェントによるテストフレームワーク Arbigent
takahirom
0
220
primeNumberでのRBS導入の現在 && RBS::Traceでinline RBSを拡充してみた
mnmandahalf
0
220
コンポーネントライブラリで実現する、アクセシビリティの正しい実装パターン
schktjm
1
610
バランスを見極めよう!実装の意味を明示するための型定義 TSKaigi 2025 Day2 (5/24)
whatasoda
2
740
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
150
テスト分析入門/Test Analysis Tutorial
goyoki
9
2.5k
Perlで痩せる
yuukis
0
300
事業KPIを基に価値の解像度を上げる
nealle
0
180
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
350
Duke on CRaC with Jakarta EE
ivargrimstad
1
610
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
38
1.8k
Rails Girls Zürich Keynote
gr2m
94
13k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Building Adaptive Systems
keathley
41
2.6k
Faster Mobile Websites
deanohume
307
31k
What's in a price? How to price your products and services
michaelherold
245
12k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.3k
How to train your dragon (web standard)
notwaldorf
92
6k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
GitHub John Nunemaker MongoChicago 2012 November 12, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
18 months Since public launch
10-15 Million Page views per day
2.7 Billion Page views to date
13 tiny servers 2 web, 6 app, 3 db, 2
queue
requests/sec
ops/sec
cpu %
lock %
Implementation How we do what we do
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
[ "content.2011.7", "content.2011.8", "content.2011.9", "content.2011.10", "content.2011.11", "content.2011.12", "content.2012.1", "content.2012.2", "content.2012.3",
"content.2012.4", ]
[ "resolutions.2011", "resolutions.2012", ]
Move
Move BigintMove
Move BigintMove MakeYouWannaMove
Move BigintMove MakeYouWannaMove DaMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove DanceMove
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoChicago 2012 November 12,
2012 @jnunemaker