Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
November 13, 2012
Programming
11
950
MongoDB for Analytics
Presented at MongoChicago on November 13, 2012.
John Nunemaker
PRO
November 13, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.3k
Addicted to Stable
jnunemaker
PRO
32
2.6k
MongoDB for Analytics
jnunemaker
PRO
21
2.3k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Why NoSQL?
jnunemaker
PRO
10
950
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
980
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.5k
Other Decks in Programming
See All in Programming
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
860
🔨 小さなビルドシステムを作る
momeemt
4
680
1から理解するWeb Push
dora1998
7
1.9k
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
Rancher と Terraform
fufuhu
2
460
アプリの "かわいい" を支えるアニメーションツールRiveについて
uetyo
0
270
為你自己學 Python - 冷知識篇
eddie
1
350
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
1.5k
Swift Updates - Learn Languages 2025
koher
2
480
testingを眺める
matumoto
1
140
ファインディ株式会社におけるMCP活用とサービス開発
starfish719
0
1.5k
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.3k
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
Being A Developer After 40
akosma
90
590k
Gamification - CAS2011
davidbonilla
81
5.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Designing Experiences People Love
moore
142
24k
Balancing Empowerment & Direction
lara
3
620
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Fireside Chat
paigeccino
39
3.6k
Faster Mobile Websites
deanohume
309
31k
Rails Girls Zürich Keynote
gr2m
95
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
GitHub John Nunemaker MongoChicago 2012 November 12, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
18 months Since public launch
10-15 Million Page views per day
2.7 Billion Page views to date
13 tiny servers 2 web, 6 app, 3 db, 2
queue
requests/sec
ops/sec
cpu %
lock %
Implementation How we do what we do
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
[ "content.2011.7", "content.2011.8", "content.2011.9", "content.2011.10", "content.2011.11", "content.2011.12", "content.2012.1", "content.2012.2", "content.2012.3",
"content.2012.4", ]
[ "resolutions.2011", "resolutions.2012", ]
Move
Move BigintMove
Move BigintMove MakeYouWannaMove
Move BigintMove MakeYouWannaMove DaMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove DanceMove
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoChicago 2012 November 12,
2012 @jnunemaker