Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
November 13, 2012
Programming
11
900
MongoDB for Analytics
Presented at MongoChicago on November 13, 2012.
John Nunemaker
PRO
November 13, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.2k
Addicted to Stable
jnunemaker
PRO
32
2.5k
MongoDB for Analytics
jnunemaker
PRO
21
2.2k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.3k
Why NoSQL?
jnunemaker
PRO
10
920
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.4k
I Have No Talent
jnunemaker
PRO
14
960
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
Making TCPSocket.new "Happy"!
coe401_
1
3.3k
Cursor/Devin全社導入の理想と現実
saitoryc
28
22k
スモールスタートで始めるためのLambda×モノリス(Lambdalith)
akihisaikeda
2
390
20250429 - CNTUG Meetup #67 / DevOps Taiwan Meetup #69 - Deep Dive into Tetragon: Building Runtime Security and Observability with eBPF
tico88612
0
170
Orleans + Sekiban + SignalR でリアルタイムWeb作ってみた
tomohisa
0
240
Instrumentsを使用した アプリのパフォーマンス向上方法
hinakko
0
240
The Nature of Complexity in John Ousterhout’s Philosophy of Software Design
philipschwarz
PRO
0
160
オープンソースコントリビュート入門
_katsuma
0
120
Bedrock × Confluenceで簡単(?)社内RAG
iharuoru
1
120
ComposeでWebアプリを作る技術
tbsten
0
130
Road to RubyKaigi: Making Tinny Chiptunes with Ruby
makicamel
4
540
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
3
1.5k
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
41
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
Side Projects
sachag
453
42k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
Building Applications with DynamoDB
mza
94
6.4k
The Invisible Side of Design
smashingmag
299
50k
Practical Orchestrator
shlominoach
187
11k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
120
52k
Transcript
GitHub John Nunemaker MongoChicago 2012 November 12, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
18 months Since public launch
10-15 Million Page views per day
2.7 Billion Page views to date
13 tiny servers 2 web, 6 app, 3 db, 2
queue
requests/sec
ops/sec
cpu %
lock %
Implementation How we do what we do
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
[ "content.2011.7", "content.2011.8", "content.2011.9", "content.2011.10", "content.2011.11", "content.2011.12", "content.2012.1", "content.2012.2", "content.2012.3",
"content.2012.4", ]
[ "resolutions.2011", "resolutions.2012", ]
Move
Move BigintMove
Move BigintMove MakeYouWannaMove
Move BigintMove MakeYouWannaMove DaMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove DanceMove
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoChicago 2012 November 12,
2012 @jnunemaker