Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
November 13, 2012
Programming
10
810
MongoDB for Analytics
Presented at MongoChicago on November 13, 2012.
John Nunemaker
PRO
November 13, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
9
4.2k
Addicted to Stable
jnunemaker
PRO
32
2.4k
MongoDB for Analytics
jnunemaker
PRO
21
2.2k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Why NoSQL?
jnunemaker
PRO
10
900
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.3k
I Have No Talent
jnunemaker
PRO
14
920
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
似たもの同士のPerlとPHP
uzulla
1
130
As an Engineers, let's build the CRM system via LINE Official Account 2.0
clonn
1
670
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
930
命名をリントする
chiroruxx
1
380
テストコード文化を0から作り、変化し続けた組織
kazatohiei
2
1.5k
短期間での新規プロダクト開発における「コスパの良い」Goのテスト戦略」 / kamakura.go
n3xem
2
160
MCP with Cloudflare Workers
yusukebe
2
220
layerx_20241129.pdf
kyoheig3
2
290
今からはじめるAndroidアプリ開発 2024 / DevFest 2024
star_zero
0
1k
14 Years of iOS: Lessons and Key Points
seyfoyun
1
770
今年一番支援させていただいたのは認証系サービスでした
satoshi256kbyte
1
250
42 best practices for Symfony, a decade later
tucksaun
1
180
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.1k
Become a Pro
speakerdeck
PRO
26
5k
How GitHub (no longer) Works
holman
311
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Optimizing for Happiness
mojombo
376
70k
Site-Speed That Sticks
csswizardry
2
190
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
RailsConf 2023
tenderlove
29
940
Transcript
GitHub John Nunemaker MongoChicago 2012 November 12, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
18 months Since public launch
10-15 Million Page views per day
2.7 Billion Page views to date
13 tiny servers 2 web, 6 app, 3 db, 2
queue
requests/sec
ops/sec
cpu %
lock %
Implementation How we do what we do
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
[ "content.2011.7", "content.2011.8", "content.2011.9", "content.2011.10", "content.2011.11", "content.2011.12", "content.2012.1", "content.2012.2", "content.2012.3",
"content.2012.4", ]
[ "resolutions.2011", "resolutions.2012", ]
Move
Move BigintMove
Move BigintMove MakeYouWannaMove
Move BigintMove MakeYouWannaMove DaMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove DanceMove
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoChicago 2012 November 12,
2012 @jnunemaker