Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
不偏推定量とJackknife法 / Jackknife
Search
kaityo256
PRO
March 18, 2021
Education
25
3.8k
不偏推定量とJackknife法 / Jackknife
いわゆる1/NバイアスとJackknifeリサンプリングについての解説
kaityo256
PRO
March 18, 2021
Tweet
Share
More Decks by kaityo256
See All by kaityo256
デバッグの話 / Debugging for Beginners
kaityo256
PRO
9
920
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
4
240
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
4.9k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
830
論文の読み方 / How to survey
kaityo256
PRO
220
160k
リンゴゲームと貧富の差 / Origin of the disparity of wealth
kaityo256
PRO
14
14k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
9
8.5k
時間の矢について / Time's arrow
kaityo256
PRO
12
17k
t-SNEをざっくりと理解 / Overview of t-SNE
kaityo256
PRO
2
1.3k
Other Decks in Education
See All in Education
20241002_Copilotって何?+Power_AutomateのCopilot
ponponmikankan
1
160
技術を楽しもう/enjoy_engineering
studio_graph
1
420
情報処理工学問題集 /infoeng_practices
kfujita
0
120
Medicare 101 for 2025
robinlee
PRO
0
230
学習指導要領から職場の学びを考えてみる / Thinking about workplace learning from learning guidelines
aki_moon
1
710
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
700
The Gender Gap in the Technology Field and Efforts to Address It
codeforeveryone
0
210
ルクソールとツタンカーメン
masakamayama
1
830
CompTIA Security+ SY0-601 Resumo
mariliarochas
2
2.6k
Qualtricsで相互作用実験する「SMARTRIQS」入門編
kscscr
0
320
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
680
Image Processing 1 : 1.Introduction
hachama
0
260
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
A Tale of Four Properties
chriscoyier
156
23k
Gamification - CAS2011
davidbonilla
80
5k
Facilitating Awesome Meetings
lara
50
6.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Typedesign – Prime Four
hannesfritz
40
2.4k
Site-Speed That Sticks
csswizardry
0
25
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Transcript
1 不偏推定量とJackknife法 慶應義塾大学理工学部物理情報工学科 渡辺 2021/03/18
2 確率変数 𝑋 確率密度 𝑓(𝑥) 𝑃 𝑥 ≤
𝑋 < 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 母集団の期待値 μ = 𝑥𝑓 𝑥 𝑑𝑥 一次のモーメント この確率変数の期待値(平均値)μの関数g(μ) をサンプリングにより推定したい 母集団の分散 𝜎2 = (𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 二次
3 N回のサンプリングデータ 𝑋1 , 𝑋2 , ⋯ ,
𝑋𝑁 期待値の推定値(推定量) 1 𝑁 σ 𝑖 𝑋𝑖 推定量の期待値 「期待値の推定量」は確率変数となる N回のサンプリングを何度も繰り返し、推定量の期待値を得る 1 𝑁 σ𝑖 𝑋𝑖 = 𝜇 母集団の期待値 (推定したい値) 標本からサンプリングして得られた推定量の期待値が 母集団の期待値に等しい場合、その推定量を不偏推定量と呼ぶ ※ サンプリングで分散を計算する時Nで割ると不偏推定量にならないのでN-1で割る
4 N回測定して得られた期待値の推定量 「期待値の関数」の値を推定したい 𝑦 = 𝑔(𝜇) 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 これをそのまま関数に入れて期待値をとっても 不偏推定量にならない 𝑦 = 𝑔 𝜇 ≠ 𝑔(𝜇𝑁 )
5 一般に確率変数 𝑋 について 𝑔( 𝑋) ≠ 𝑔
𝑋 と 𝑔( 𝑋) 関数の期待値 期待値の関数𝑔 𝑋 は 一致しないから ※期待値をとってから関数にいれるか、関数に入れてから期待値を取るかの違い
6 μ g(x)を上に凸な関数とし、x=μで接線をひく 𝑦 = 𝑎 𝑥 − 𝜇 +
𝑔(𝜇) 𝑦 = 𝑔(𝑥) ※ Thanks to @genkuroki 上図より明らかに 𝑔 𝑥 ≤ 𝑎 𝑥 − 𝜇 + 𝑔(𝜇) 両辺の期待値を取れば 𝑔 𝑥 ≤ 𝑔 𝜇 = 𝑔( 𝑥 ) 下に凸の場合は符号が逆に
7 𝜀 = 𝜇𝑁 − 𝜇 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 N回の測定で得られた期待値の推定量 真の期待値とのずれ 𝑔 𝜇𝑁 − 𝑔 𝜇 = 𝑔 𝜇 + 𝜀 − 𝑔 𝜇 = 𝑔′ 𝜇 𝜀 + 1 2 𝑔′′ 𝜇 𝜀2 + 𝑂(𝜀3) 𝑔 𝜇𝑁 − 𝑔 𝜇 = 1 2 𝑔′′ 𝜇 𝜀2 = 𝑔′′(𝜇)𝜎2 2𝑁 真の値 推定値 推定値と真の値のずれの期待値 1/Nバイアス
8 平均0、分散𝜎2のガウス分布に従う確率変数Xを考える 𝑋2 = 𝜎2 𝑋4 = 3𝜎4
2次のモーメント 4次のモーメント 4次と2次のモーメントの比を取ると、分散依存性が消える 𝑋4 𝑋2 2 = 3 尖度(Kurtosis) この量の1/Nバイアスを確認する
9 𝑋2 𝑁 = 1 𝑁 𝑖
𝑋𝑖 2 𝑋4 𝑁 = 1 𝑁 𝑖 𝑋𝑖 4 N個のサンプリング(N回の測定)で得られたデータから 2次と4次のモーメントを推定する 𝑈𝑁 = 𝑋4 𝑁 𝑋2 𝑁 2 得られたモーメントから尖度を計算する 上記を繰り返して𝑈𝑁 の期待値 𝑈𝑁 を計算する
10 𝑈𝑁 1/𝑁 理論値 十分なサンプリング回数にも関わらず、真の値からずれている(バイアス) 推定値
11 それをN個ずつのブロックに分割する 十分な数(無限個でも良い)のデータがある 𝑁 それぞれのブロックの期待値𝜇𝑁 から「期待値の関数」を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 )
𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 「期待値の関数」の期待値を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) バイアスが残る ・・・ ・・・ ・・・
12 不偏推定量ではあるが、ばらつきのせいで真の値 からずれる誤差を統計誤差(標準誤差)と呼ぶ 𝜇𝑁 = 1 𝑁 𝑖
𝑋𝑖 𝜇𝑁 − 𝜇 = 𝑂(1/ 𝑁) 不偏推定量でない推定量の期待値について、真の値 からのずれを系統誤差(バイアス)と呼ぶ。 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) N回の測定をMセット繰り返す時、Mを増やすと 統計誤差は減らせるが、系統誤差は消えない (間違った値に収束する)
13 期待値の関数の推定には1/Nバイアスが乗る N無限大極限では一致するが、収束が遅い 手持ちのデータから1/Nバイアスを除去したい Jackknifeリサンプリング
14 N個のデータがある 𝑁 全部のデータを使って期待値𝜇𝑁 を計算 それを使って関数の推定値𝑈𝑁 = 𝑔(𝜇𝑁 )を計算 1個のデータを捨てる
𝑁 − 1 残りのデータを使って期待値𝜇𝑁−1 を計算 それを使って関数の推定値𝑈𝑁−1 = 𝑔(𝜇𝑁−1 )を計算
15 𝑈𝑁 は、真の値𝑈∞ に対して1/Nバイアスがあると仮定 𝑈𝑁 = 𝑈∞ + 𝑎/𝑁 一つデータを捨てて得た𝑈𝑁
のバイアスは 𝑈𝑁−1 = 𝑈∞ + 𝑎/(𝑁 − 1) この2式から𝑈∞ を求めると 𝑈∞ = 𝑁𝑈𝑁 − (𝑁 − 1)𝑈𝑁−1 ※ Thanks to smorita and yomichi
16 𝑈𝑁 1/𝑁 𝑁 = ∞ NとN-1から1/N→0外挿を行った
17 1個のデータ除外して計算 せっかくのデータを捨てるのはもったいないので活用する 𝑈𝑁−1 1 𝑈𝑁−1 2 別のデータ除外して計算 ・ ・
・ 𝑈𝑁−1 𝑁 𝑈𝑁−1 = 1 𝑁 𝑖 𝑈𝑁−1 𝑖 精度の高い「N-1個のデータの推定量」 が得られる
18 𝑈𝑁 1/𝑁 理論値 単純な推定値 Jackknifeによるバイアス除去 𝑁𝑈𝑁 − (𝑁 −
1)𝑈𝑁−1 𝑈𝑁
19 母集団の何かを推定する量を推定量(estimator)と呼ぶ 誤差には統計誤差と系統誤差(バイアス)がある その期待値が母集団の期待値に一致する量(バイアス が無い量)を不偏推定量(unbiased estimator)と呼ぶ 期待値の関数の単純な推定は不偏推定量を与えない Jackknife法はリサンプリング法の一種 リサンプリングによりバイアスを除去できる (ことがある)
※もっとまじめにやるならbootstrap法とかを使う