Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
不偏推定量とJackknife法 / Jackknife
Search
kaityo256
PRO
March 18, 2021
Education
26
3.9k
不偏推定量とJackknife法 / Jackknife
いわゆる1/NバイアスとJackknifeリサンプリングについての解説
kaityo256
PRO
March 18, 2021
Tweet
Share
More Decks by kaityo256
See All by kaityo256
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
220
論文紹介のやり方 / How to review
kaityo256
PRO
15
77k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
9
1.4k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
6
430
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.1k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
1.1k
論文の読み方 / How to survey
kaityo256
PRO
219
160k
リンゴゲームと貧富の差 / Origin of the disparity of wealth
kaityo256
PRO
14
14k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
9
9k
Other Decks in Education
See All in Education
とある EM の初めての育休からの学び
clown0082
1
2.8k
【お子さま向け】Amazon ECS サービスディスカバリーって知ってる?【楽しい読み聞かせ】
tubone24
8
840
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
4
15k
Data Presentation - Lecture 5 - Information Visualisation (4019538FNR)
signer
PRO
0
2.3k
いにしえの国産データベース~桐~って知っていますか?
masakiokuda
2
130
Ilman kirjautumista toimivia sovelluksia
matleenalaakso
1
20k
OCIでインスタンス構築してみた所感
masakiokuda
0
180
The Prison Industrial Complex by Billy Dee
oripsolob
0
830
FinOpsスキルの効率的な上げ方 #ochacafe
chacco38
1
120
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
190
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
130
SAT Bootcamp and Course
syedmahadd
0
170
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
The Language of Interfaces
destraynor
157
24k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Visualization
eitanlees
146
16k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
620
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
Thoughts on Productivity
jonyablonski
69
4.5k
Designing for humans not robots
tammielis
250
25k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Transcript
1 不偏推定量とJackknife法 慶應義塾大学理工学部物理情報工学科 渡辺 2021/03/18
2 確率変数 𝑋 確率密度 𝑓(𝑥) 𝑃 𝑥 ≤
𝑋 < 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 母集団の期待値 μ = 𝑥𝑓 𝑥 𝑑𝑥 一次のモーメント この確率変数の期待値(平均値)μの関数g(μ) をサンプリングにより推定したい 母集団の分散 𝜎2 = (𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 二次
3 N回のサンプリングデータ 𝑋1 , 𝑋2 , ⋯ ,
𝑋𝑁 期待値の推定値(推定量) 1 𝑁 σ 𝑖 𝑋𝑖 推定量の期待値 「期待値の推定量」は確率変数となる N回のサンプリングを何度も繰り返し、推定量の期待値を得る 1 𝑁 σ𝑖 𝑋𝑖 = 𝜇 母集団の期待値 (推定したい値) 標本からサンプリングして得られた推定量の期待値が 母集団の期待値に等しい場合、その推定量を不偏推定量と呼ぶ ※ サンプリングで分散を計算する時Nで割ると不偏推定量にならないのでN-1で割る
4 N回測定して得られた期待値の推定量 「期待値の関数」の値を推定したい 𝑦 = 𝑔(𝜇) 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 これをそのまま関数に入れて期待値をとっても 不偏推定量にならない 𝑦 = 𝑔 𝜇 ≠ 𝑔(𝜇𝑁 )
5 一般に確率変数 𝑋 について 𝑔( 𝑋) ≠ 𝑔
𝑋 と 𝑔( 𝑋) 関数の期待値 期待値の関数𝑔 𝑋 は 一致しないから ※期待値をとってから関数にいれるか、関数に入れてから期待値を取るかの違い
6 μ g(x)を上に凸な関数とし、x=μで接線をひく 𝑦 = 𝑎 𝑥 − 𝜇 +
𝑔(𝜇) 𝑦 = 𝑔(𝑥) ※ Thanks to @genkuroki 上図より明らかに 𝑔 𝑥 ≤ 𝑎 𝑥 − 𝜇 + 𝑔(𝜇) 両辺の期待値を取れば 𝑔 𝑥 ≤ 𝑔 𝜇 = 𝑔( 𝑥 ) 下に凸の場合は符号が逆に
7 𝜀 = 𝜇𝑁 − 𝜇 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 N回の測定で得られた期待値の推定量 真の期待値とのずれ 𝑔 𝜇𝑁 − 𝑔 𝜇 = 𝑔 𝜇 + 𝜀 − 𝑔 𝜇 = 𝑔′ 𝜇 𝜀 + 1 2 𝑔′′ 𝜇 𝜀2 + 𝑂(𝜀3) 𝑔 𝜇𝑁 − 𝑔 𝜇 = 1 2 𝑔′′ 𝜇 𝜀2 = 𝑔′′(𝜇)𝜎2 2𝑁 真の値 推定値 推定値と真の値のずれの期待値 1/Nバイアス
8 平均0、分散𝜎2のガウス分布に従う確率変数Xを考える 𝑋2 = 𝜎2 𝑋4 = 3𝜎4
2次のモーメント 4次のモーメント 4次と2次のモーメントの比を取ると、分散依存性が消える 𝑋4 𝑋2 2 = 3 尖度(Kurtosis) この量の1/Nバイアスを確認する
9 𝑋2 𝑁 = 1 𝑁 𝑖
𝑋𝑖 2 𝑋4 𝑁 = 1 𝑁 𝑖 𝑋𝑖 4 N個のサンプリング(N回の測定)で得られたデータから 2次と4次のモーメントを推定する 𝑈𝑁 = 𝑋4 𝑁 𝑋2 𝑁 2 得られたモーメントから尖度を計算する 上記を繰り返して𝑈𝑁 の期待値 𝑈𝑁 を計算する
10 𝑈𝑁 1/𝑁 理論値 十分なサンプリング回数にも関わらず、真の値からずれている(バイアス) 推定値
11 それをN個ずつのブロックに分割する 十分な数(無限個でも良い)のデータがある 𝑁 それぞれのブロックの期待値𝜇𝑁 から「期待値の関数」を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 )
𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 「期待値の関数」の期待値を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) バイアスが残る ・・・ ・・・ ・・・
12 不偏推定量ではあるが、ばらつきのせいで真の値 からずれる誤差を統計誤差(標準誤差)と呼ぶ 𝜇𝑁 = 1 𝑁 𝑖
𝑋𝑖 𝜇𝑁 − 𝜇 = 𝑂(1/ 𝑁) 不偏推定量でない推定量の期待値について、真の値 からのずれを系統誤差(バイアス)と呼ぶ。 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) N回の測定をMセット繰り返す時、Mを増やすと 統計誤差は減らせるが、系統誤差は消えない (間違った値に収束する)
13 期待値の関数の推定には1/Nバイアスが乗る N無限大極限では一致するが、収束が遅い 手持ちのデータから1/Nバイアスを除去したい Jackknifeリサンプリング
14 N個のデータがある 𝑁 全部のデータを使って期待値𝜇𝑁 を計算 それを使って関数の推定値𝑈𝑁 = 𝑔(𝜇𝑁 )を計算 1個のデータを捨てる
𝑁 − 1 残りのデータを使って期待値𝜇𝑁−1 を計算 それを使って関数の推定値𝑈𝑁−1 = 𝑔(𝜇𝑁−1 )を計算
15 𝑈𝑁 は、真の値𝑈∞ に対して1/Nバイアスがあると仮定 𝑈𝑁 = 𝑈∞ + 𝑎/𝑁 一つデータを捨てて得た𝑈𝑁
のバイアスは 𝑈𝑁−1 = 𝑈∞ + 𝑎/(𝑁 − 1) この2式から𝑈∞ を求めると 𝑈∞ = 𝑁𝑈𝑁 − (𝑁 − 1)𝑈𝑁−1 ※ Thanks to smorita and yomichi
16 𝑈𝑁 1/𝑁 𝑁 = ∞ NとN-1から1/N→0外挿を行った
17 1個のデータ除外して計算 せっかくのデータを捨てるのはもったいないので活用する 𝑈𝑁−1 1 𝑈𝑁−1 2 別のデータ除外して計算 ・ ・
・ 𝑈𝑁−1 𝑁 𝑈𝑁−1 = 1 𝑁 𝑖 𝑈𝑁−1 𝑖 精度の高い「N-1個のデータの推定量」 が得られる
18 𝑈𝑁 1/𝑁 理論値 単純な推定値 Jackknifeによるバイアス除去 𝑁𝑈𝑁 − (𝑁 −
1)𝑈𝑁−1 𝑈𝑁
19 母集団の何かを推定する量を推定量(estimator)と呼ぶ 誤差には統計誤差と系統誤差(バイアス)がある その期待値が母集団の期待値に一致する量(バイアス が無い量)を不偏推定量(unbiased estimator)と呼ぶ 期待値の関数の単純な推定は不偏推定量を与えない Jackknife法はリサンプリング法の一種 リサンプリングによりバイアスを除去できる (ことがある)
※もっとまじめにやるならbootstrap法とかを使う