Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
不偏推定量とJackknife法 / Jackknife
Search
kaityo256
March 18, 2021
Education
26
3.9k
不偏推定量とJackknife法 / Jackknife
いわゆる1/NバイアスとJackknifeリサンプリングについての解説
kaityo256
March 18, 2021
Tweet
Share
More Decks by kaityo256
See All by kaityo256
論文紹介のやり方 / How to review
kaityo256
14
76k
デバッグの話 / Debugging for Beginners
kaityo256
9
1.3k
ビット演算の話 / Let's play with bit operations
kaityo256
5
380
GNU Makeの使い方 / How to use GNU Make
kaityo256
15
5.1k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
3
1.1k
論文の読み方 / How to survey
kaityo256
219
160k
リンゴゲームと貧富の差 / Origin of the disparity of wealth
kaityo256
14
14k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
9
8.9k
時間の矢について / Time's arrow
kaityo256
12
17k
Other Decks in Education
See All in Education
Data Representation - Lecture 3 - Information Visualisation (4019538FNR)
signer
PRO
1
2.2k
自分にあった読書方法を探索するワークショップ / Reading Catalog Workshop
aki_moon
0
320
Image compression
hachama
0
410
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
Informasi Program Coding Camp 2025 powered by DBS Foundation
codingcamp2025
0
160
Initiatives on Bridging the Gender Gap in the Technology Sector
codeforeveryone
0
130
統計学に必要な数学(線形代数含む)
kosugitti
0
280
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
2.7k
とある EM の初めての育休からの学び
clown0082
1
1.6k
Juvenile in Justice
oripsolob
0
320
【お子さま向け】Amazon ECS サービスディスカバリーって知ってる?【楽しい読み聞かせ】
tubone24
7
830
Introduction - Lecture 1 - Advanced Topics in Big Data (4023256FNR)
signer
PRO
1
1.7k
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
172
14k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Gamification - CAS2011
davidbonilla
80
5.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
260
Git: the NoSQL Database
bkeepers
PRO
428
65k
For a Future-Friendly Web
brad_frost
176
9.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
How to train your dragon (web standard)
notwaldorf
91
5.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
BBQ
matthewcrist
87
9.5k
Transcript
1 不偏推定量とJackknife法 慶應義塾大学理工学部物理情報工学科 渡辺 2021/03/18
2 確率変数 𝑋 確率密度 𝑓(𝑥) 𝑃 𝑥 ≤
𝑋 < 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 母集団の期待値 μ = 𝑥𝑓 𝑥 𝑑𝑥 一次のモーメント この確率変数の期待値(平均値)μの関数g(μ) をサンプリングにより推定したい 母集団の分散 𝜎2 = (𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 二次
3 N回のサンプリングデータ 𝑋1 , 𝑋2 , ⋯ ,
𝑋𝑁 期待値の推定値(推定量) 1 𝑁 σ 𝑖 𝑋𝑖 推定量の期待値 「期待値の推定量」は確率変数となる N回のサンプリングを何度も繰り返し、推定量の期待値を得る 1 𝑁 σ𝑖 𝑋𝑖 = 𝜇 母集団の期待値 (推定したい値) 標本からサンプリングして得られた推定量の期待値が 母集団の期待値に等しい場合、その推定量を不偏推定量と呼ぶ ※ サンプリングで分散を計算する時Nで割ると不偏推定量にならないのでN-1で割る
4 N回測定して得られた期待値の推定量 「期待値の関数」の値を推定したい 𝑦 = 𝑔(𝜇) 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 これをそのまま関数に入れて期待値をとっても 不偏推定量にならない 𝑦 = 𝑔 𝜇 ≠ 𝑔(𝜇𝑁 )
5 一般に確率変数 𝑋 について 𝑔( 𝑋) ≠ 𝑔
𝑋 と 𝑔( 𝑋) 関数の期待値 期待値の関数𝑔 𝑋 は 一致しないから ※期待値をとってから関数にいれるか、関数に入れてから期待値を取るかの違い
6 μ g(x)を上に凸な関数とし、x=μで接線をひく 𝑦 = 𝑎 𝑥 − 𝜇 +
𝑔(𝜇) 𝑦 = 𝑔(𝑥) ※ Thanks to @genkuroki 上図より明らかに 𝑔 𝑥 ≤ 𝑎 𝑥 − 𝜇 + 𝑔(𝜇) 両辺の期待値を取れば 𝑔 𝑥 ≤ 𝑔 𝜇 = 𝑔( 𝑥 ) 下に凸の場合は符号が逆に
7 𝜀 = 𝜇𝑁 − 𝜇 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 N回の測定で得られた期待値の推定量 真の期待値とのずれ 𝑔 𝜇𝑁 − 𝑔 𝜇 = 𝑔 𝜇 + 𝜀 − 𝑔 𝜇 = 𝑔′ 𝜇 𝜀 + 1 2 𝑔′′ 𝜇 𝜀2 + 𝑂(𝜀3) 𝑔 𝜇𝑁 − 𝑔 𝜇 = 1 2 𝑔′′ 𝜇 𝜀2 = 𝑔′′(𝜇)𝜎2 2𝑁 真の値 推定値 推定値と真の値のずれの期待値 1/Nバイアス
8 平均0、分散𝜎2のガウス分布に従う確率変数Xを考える 𝑋2 = 𝜎2 𝑋4 = 3𝜎4
2次のモーメント 4次のモーメント 4次と2次のモーメントの比を取ると、分散依存性が消える 𝑋4 𝑋2 2 = 3 尖度(Kurtosis) この量の1/Nバイアスを確認する
9 𝑋2 𝑁 = 1 𝑁 𝑖
𝑋𝑖 2 𝑋4 𝑁 = 1 𝑁 𝑖 𝑋𝑖 4 N個のサンプリング(N回の測定)で得られたデータから 2次と4次のモーメントを推定する 𝑈𝑁 = 𝑋4 𝑁 𝑋2 𝑁 2 得られたモーメントから尖度を計算する 上記を繰り返して𝑈𝑁 の期待値 𝑈𝑁 を計算する
10 𝑈𝑁 1/𝑁 理論値 十分なサンプリング回数にも関わらず、真の値からずれている(バイアス) 推定値
11 それをN個ずつのブロックに分割する 十分な数(無限個でも良い)のデータがある 𝑁 それぞれのブロックの期待値𝜇𝑁 から「期待値の関数」を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 )
𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 「期待値の関数」の期待値を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) バイアスが残る ・・・ ・・・ ・・・
12 不偏推定量ではあるが、ばらつきのせいで真の値 からずれる誤差を統計誤差(標準誤差)と呼ぶ 𝜇𝑁 = 1 𝑁 𝑖
𝑋𝑖 𝜇𝑁 − 𝜇 = 𝑂(1/ 𝑁) 不偏推定量でない推定量の期待値について、真の値 からのずれを系統誤差(バイアス)と呼ぶ。 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) N回の測定をMセット繰り返す時、Mを増やすと 統計誤差は減らせるが、系統誤差は消えない (間違った値に収束する)
13 期待値の関数の推定には1/Nバイアスが乗る N無限大極限では一致するが、収束が遅い 手持ちのデータから1/Nバイアスを除去したい Jackknifeリサンプリング
14 N個のデータがある 𝑁 全部のデータを使って期待値𝜇𝑁 を計算 それを使って関数の推定値𝑈𝑁 = 𝑔(𝜇𝑁 )を計算 1個のデータを捨てる
𝑁 − 1 残りのデータを使って期待値𝜇𝑁−1 を計算 それを使って関数の推定値𝑈𝑁−1 = 𝑔(𝜇𝑁−1 )を計算
15 𝑈𝑁 は、真の値𝑈∞ に対して1/Nバイアスがあると仮定 𝑈𝑁 = 𝑈∞ + 𝑎/𝑁 一つデータを捨てて得た𝑈𝑁
のバイアスは 𝑈𝑁−1 = 𝑈∞ + 𝑎/(𝑁 − 1) この2式から𝑈∞ を求めると 𝑈∞ = 𝑁𝑈𝑁 − (𝑁 − 1)𝑈𝑁−1 ※ Thanks to smorita and yomichi
16 𝑈𝑁 1/𝑁 𝑁 = ∞ NとN-1から1/N→0外挿を行った
17 1個のデータ除外して計算 せっかくのデータを捨てるのはもったいないので活用する 𝑈𝑁−1 1 𝑈𝑁−1 2 別のデータ除外して計算 ・ ・
・ 𝑈𝑁−1 𝑁 𝑈𝑁−1 = 1 𝑁 𝑖 𝑈𝑁−1 𝑖 精度の高い「N-1個のデータの推定量」 が得られる
18 𝑈𝑁 1/𝑁 理論値 単純な推定値 Jackknifeによるバイアス除去 𝑁𝑈𝑁 − (𝑁 −
1)𝑈𝑁−1 𝑈𝑁
19 母集団の何かを推定する量を推定量(estimator)と呼ぶ 誤差には統計誤差と系統誤差(バイアス)がある その期待値が母集団の期待値に一致する量(バイアス が無い量)を不偏推定量(unbiased estimator)と呼ぶ 期待値の関数の単純な推定は不偏推定量を与えない Jackknife法はリサンプリング法の一種 リサンプリングによりバイアスを除去できる (ことがある)
※もっとまじめにやるならbootstrap法とかを使う