Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Lookout for Vision デモ / 20231208-aws_sem...
Search
kasacchiful
December 08, 2023
Programming
0
610
Amazon Lookout for Vision デモ / 20231208-aws_seminar-02-lookout-vision-demo
2023/12/08 (金)
新潟県工業技術総合研究所様にてデモンストレーションした
Amazon Lookout for Visionの参考資料
kasacchiful
December 08, 2023
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
290
生成AIでメタデータを生成してみた / 20250525generate-metadata-using-generative-ai
kasacchiful
0
52
Strands Agents SDK で AIエージェント作成 を試してみた / 20250525strands-agents
kasacchiful
0
74
いろんな世界を見てみよう / 20250508ninno_tech_fest
kasacchiful
0
27
Amazon Q Developer for CLIのある生活 / 20250427ai_craft_hacks_niigata1
kasacchiful
1
72
AWSのコンテナサービス / jawsug-akita-aws-container-services
kasacchiful
0
66
データ基盤でのコンテナ活用事例 / jawsug-akita-data-platform-with-container
kasacchiful
0
71
データ基盤でのコンテナ活用事例 / jawsug-niigata21-data-platform-with-container
kasacchiful
0
110
AWSのコンテナサービス / jawsug_niigata21_aws_container_services
kasacchiful
1
96
Other Decks in Programming
See All in Programming
つよそうにふるまい、つよい成果を出すのなら、つよいのかもしれない
irof
0
220
〜可視化からアクセス制御まで〜 BigQuery×Looker Studioで コスト管理とデータソース認証制御する方法
cuebic9bic
3
310
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
10
1k
関数型まつり2025登壇資料「関数プログラミングと再帰」
taisontsukada
1
370
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
0
360
イベントストーミングから始めるドメイン駆動設計
jgeem
3
750
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
2
260
技術懸念に立ち向かい 法改正を穏便に乗り切った話
pop_cashew
0
1.2k
F#で自在につくる静的ブログサイト - 関数型まつり2025
pizzacat83
0
120
Interface vs Types ~型推論が過多推論~
hirokiomote
1
240
TypeScript を活かしてデザインシステム MCP を作る / #tskaigi_after_night
izumin5210
4
500
Babylon.js 8.0のアプデ情報を 軽率にキャッチアップ / catch-up-babylonjs-8
drumath2237
0
120
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
71
4.8k
Designing Experiences People Love
moore
142
24k
Code Reviewing Like a Champion
maltzj
524
40k
GraphQLとの向き合い方2022年版
quramy
46
14k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Gamification - CAS2011
davidbonilla
81
5.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
25
2.8k
Adopting Sorbet at Scale
ufuk
77
9.4k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Git: the NoSQL Database
bkeepers
PRO
430
65k
For a Future-Friendly Web
brad_frost
178
9.8k
Transcript
Amazon Lookout for Vision デモ 2023-12-08
画像分類のデモ クッキーの割れ判別 データはAWSが公開しているサンプル を用います。
1. 画像の収集 「トレーニングデータセット」と「テストデータセット」を用意 画像はPNG形式またはJPEG形式である必要あり
2. 画像のインポート いずれかの方法で画像をインポートします。 今回はS3バケットからインポートします。 ローカルPCからインポート S3バケットからインポート 画像を含むフォルダ名を使用して画像のラベル付けが可能 Amazon SageMaker Ground
Truth マニフェストファイルをインポート
S3バケットに画像をアップロ ード S3バケットを作成します。 20231208-iri-lookout- vision-demo-kasahara とい う名前のバケットを作りまし た。
S3バケットに画像をアップロード バケットに画像をアップロードします。 以下のフォルダに分けてアップロード assets/train/normal/ assets/train/anomaly/ assets/test/normal/ assets/test/anomaly/
プロジェクトを作成 Amazon Lookout for Visionのプロジェクトを作成します。 左側メニューの「プロジェクト」から「プロジェクトを作成」をクリック プロジェクト名を適宜入力して「プロジェクトを作成」をクリック 例: 20231208-iri-lookout-vision-demo 「データセットを作成」をクリック
データセットを作成 データセットを作成の画面で以下のように設定する 「トレーニングデータセットとテストデータセットを作成する」を選択 「トレーニングデータセットの詳細」では「S3バケットからイメージをインポート する」を選択 S3 URIは以下のように設定する s3://< バケット名>/train までのフォルダパス/
例: s3://20231208-iri-lookout-vision-demo- kasahara/assets/train/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」 にチェックをいれる
「データセットの詳細をテストする」では「S3バケットからイメージをインポートす る」を選択 S3 URIは以下のように設定する s3://< バケット名>/test までのフォルダパス/ 例: s3://20231208-iri-lookout-vision-demo-kasahara/assets/test/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」にチ
ェックをいれる
「データセットを作成」ボタンをクリックする この時、S3バケットにまだバケットポリシーを設定してない場合は、ブラウザの別 タブで開いたS3の設定画面にてバケットポリシーを設定します。
データセットに「トレーニング」 と「テスト」の画像が登録されて いることを確認ください。
テスト用の異常画像を追加してラベル付け Amazon Lookout for Visionの画像分類では、トレーニング・テストの各分類において少なく ても10枚以上の画像が必要です。 サンプルで用意された画像は、テスト用の異常画像が8枚しか用意されていないため、追加で 2枚登録する必要があります。 今回はデモなので、トレーニング用の異常画像の中から2枚コピーして使おうと思います。
「アクション」から「テストデータセットを追加します」をクリックします。 トレーニング用の異常画像の中から2枚選択して、「画像をアップロード」をクリックし ます。 アップロードした画像はテスト用のところにあります。これらの画像を「異常として分 類」を設定します。 本来なら、テスト用にアップロードしたトレーニング用の異常画像は、トレーニング用の異 常画像から除いた状態でトレーニングすべきですが、今回はデモなので、このままトレーニ ングに使用します。
モデルのトレーニング データセットの画面から「モデルをトレーニング」ボタンをクリックします。 デフォルトのまま、「モデルをトレーニング」ボタンをクリックします。 「モデルをトレーニングしますか?」と表示されるので、「モデルをトレーニング」を クリックします。
モデルのトレーニングが始まりま した。トレーニング終了までしば らく待ちます。
モデルのトレーニングが完了しま した。
モデルの評価 トレーニングが完了したモデルのリンクをクリックします。 評価指標が表示されています。 Rekognitionより、詳細な結果が確認できます。 評価が悪い場合は、データセットの画像を増やす等の対応をしてモデルの再トレーニン グしてください。
モデルを使った推論 Amazon Lookout for Visionでは、APIサーバによる推論のほか、エッジデバイス側での推論 もサポートしています。 エッジデバイス側の推論では、AWS IoT Greengrass用のパッケージが作成されますので、 エッジデバイス側ではAWS
IoT Greengrassのライブラリを用いて推論します。 今回のデモは、APIサーバによる推論を実施します。 まず推論用のAPIサーバをAWS CLIまたはAWS SDKを使って立ち上げます。 その後、AWS CLIまたはAWS SDKを使って、画像の分類を行います。
推論用APIサーバの立ち上げ 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを開始」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision start-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 \ --min-inference-units 1 ## 出力結果 { "Status": "STARTING_HOSTING" }
モデルパフォーマンスメトリクスのステータスでは、「ホスティングを開始中」になっ ています。 ステータスが「ホスト済み」になるまで待ちます。 CLIでも確認できます。 aws lookoutvision describe-model \ --project-name 20231208-iri-lookout-vision-demo
\ --model-version 1
## 出力結果 { "ModelDescription": { "ModelVersion": "1", "ModelArn": "arn:aws:lookoutvision:ap-northeast-1:660035202545:model/20231208-iri-lookout-vision-demo/1", "CreationTimestamp":
"2023-12-07T13:50:39.990000+09:00", "Status": "HOSTED", "StatusMessage": "The model is running.", "Performance": { "F1Score": 1.0, "Recall": 1.0, "Precision": 1.0 }, "OutputConfig": { "S3Location": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Prefix": "projects/20231208-iri-lookout-vision-demo/models/" } }, "EvaluationManifest": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationManifest-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationResult": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationResult-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationEndTimestamp": "2023-12-07T14:09:24.886000+09:00" } }
画像の分類 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 --body には、ローカルにある画像のパスを指定します。 aws lookoutvision detect-anomalies
\ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1 \ --content-type image/jpeg \ --body /path/to/image.jpeg PNG画像の場合、 --content-type の値は image/png となります。
例1: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-normal-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": false, "Confidence": 0.9268283843994141 } }
例2: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-anomaly-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": true, "Confidence": 0.9038475751876831 } }
推論サーバの停止 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision stop-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 ## 出力結果 { "Status": "STOPPING_HOSTING" }
ステータスが「トレーニングが完了しました」になれば、APIホスティングは終了しまし た。
参考 Getting started with Amazon Lookout for Vision - Amazon
Lookout for Vision 使用したサンプル画像