Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PyCon2015

 PyCon2015

Machine Learning 101

Kyle Kastner

April 10, 2015
Tweet

More Decks by Kyle Kastner

Other Decks in Science

Transcript

  1. Machine Learning 101 PyCon 2015 Kyle Kastner LISA / MILA

    Université de Montréal Follow along! https://github.com/kastnerkyle/PyCon2015
  2. Applications • Speech processing ◦ Speech to text, text to

    speech • Image processing ◦ Self driving cars • Natural Language Processing ◦ Automatic translation • Advertising ◦ Click Through Rate (CTR) (talk @ 12!) • Recommendations ◦ Amazon, Yelp, Netflix... [2, 3]
  3. Automation Spectrum [1] Handcrafted Rules Statistics Machine Learning Deep Learning

    • if elif elif elif • DON’T TOUCH code • Magic constants • linear models • p values • Bayesian stats • MCMC sampling • K-means • SVM • Random Forests • Neural networks • Autoencoders • Recurrent net • Convolutional net
  4. • Split current data • Evaluate • Typical split ◦

    80% training ◦ 20% validation • Testing data answers unknown • Want systems to work on new data! • This approach simulates new data Train/Valid/Test
  5. What should I use? • I recommend one of two

    packages ◦ Anaconda, from Continuum.io ◦ Canopy, from Enthought • Both excellent! Anaconda: https://store.continuum. io/cshop/anaconda/ Enthought: https://store.enthought.com/
  6. List of Resources • Google Python Class https://developers.google.com/edu/python/?csw=1 • Numpy

    tutorial http://wiki.scipy.org/Tentative_NumPy_Tutorial • Numpy to Matlab table http://wiki.scipy.org/Tentative_NumPy_Tutorial • scikit-learn documentation http://scikit-learn.org/stable/tutorial/index.html • scikit-learn tutorial slides https://github.com/ogrisel/parallel_ml_tutorial • more tutorial slides https://github.com/jakevdp/sklearn_pycon2015/ • Coursera ML course (octave/Matlab) https://www.coursera.org/learn/machine-learning • Stanford UFLDL http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial • Ian Goodfellow’s Intro to Theano https://github.com/goodfeli/theano_exercises • Theano notebooks http://nbviewer.ipython. org/github/jaberg/IPythonTheanoTutorials/tree/master/ipynb/ • Theano Deep Learning Tutorial http://deeplearning.net/tutorial/ • Machine Learning for Vision http://www.iro.umontreal. ca/~memisevr/teaching/ift6268_2015/index.html • Representation Learning https://ift6266h15.wordpress.com/ • Coursera NN course https://www.coursera.org/course/neuralnets
  7. References [1] Taken from Wikipedia http://en.wikipedia.org/wiki/File:EM_Spectrum_Properties_edit.svg [2] K. Xu, J.

    Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention http://arxiv.org/abs/1502.03044 [3] J. Chorowski, D. Bahdanau, K. Cho, Y. Bengio. End-to-end Continuous Speech Recognition using Attention-based Recurrent Neural Networks http://arxiv.org/abs/1412.1602 [4] J. Elson, J. Douceur, J. Howell, J. Saul. Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization. In Proceedings of 14th ACM Conference on Computer and Communications Security (CCS), Association for Computing Machinery, Inc., Oct. 2007 [5] G. Hinton, P. Dayan, M. Revow. Modelling the Manifolds of Images of Handwritten Digits. http://www.cs.toronto.edu/~fritz/absps/manifold.pdf [6] Bayes Rule. http://www.eecs.qmul.ac.uk/~norman/BBNs/Bayes_rule.htm