Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PyGotham2015

Kyle Kastner
August 16, 2015

 PyGotham2015

Kyle Kastner

August 16, 2015
Tweet

More Decks by Kyle Kastner

Other Decks in Research

Transcript

  1. What Can I Do With Deep Learning? Kyle Kastner Université

    de Montréal - MILA Intern - IBM Watson @ Yorktown Heights
  2. Automation Spectrum Introspection Machine Automation Statistics Learning Deep Learning sklearn

    statsmodels pymc3 Theano Keras Blocks Lasagne pylearn2 sklearn-theano patsy shogun Torch (Lua)
  3. Technology • Theano (UMontreal) ◦ Optimizing compiler ◦ Automatic differentiation

    ◦ GPU or CPU set by single flag ◦ THEANO_FLAGS=”mode=FAST_RUN,device=gpu,floatX=float32” • Caffe (Berkeley) ◦ Computer vision tools in C++/CUDA (GPU) • Torch (NYU/Facebook/Google) ◦ Lua with C/CUDA operations [1, 2, 3]
  4. Image Processing (sklearn-theano) dog_label = 'dog.n.01' cat_label = 'cat.n.01' clf

    = OverfeatLocalizer(top_n=1, match_strings=[dog_label, cat_label]) points = clf.predict(X) dog_points = points[0] cat_points = points[1] http://sklearn-theano.github.io/auto_examples/plot_multiple_localization.html [4, 5]
  5. More Image Processing (Lasagne) • Won Kaggle competitions on: ◦

    Plankton: http://benanne.github.io/2015/03/17/plankton.html ◦ Galaxies: http://benanne.github.io/2014/04/05/galaxy-zoo.html ◦ Maintained and used by many researchers ▪ (UGhent) Dieleman et. al. for above competitions [6, 7]
  6. General Computer Vision (Caffe) • Used for CV ◦ Research

    ◦ Industry • Lots of unique tools ◦ Pretrained networks ◦ Jason Yosinski et. al. ▪ Deep Vis Toolbox https://github.com/yosinski/deep-visualization-toolbox https://www.youtube.com/watch?v=AgkfIQ4IGaM [8]
  7. Generative Images (Torch / Theano) • DRAW ◦ Gregor et.

    al. ◦ Reproduced by J. Bornschein https://github.com/jbornschein/draw • Eyescream ◦ Denton et. al. (code in ref.) • Generative Adversarial Networks ◦ Goodfellow et. al. [9, 10, 11]
  8. “Dreaming” (Caffe) • Generated from trained network ◦ GoogleNet •

    Turns out it is pretty cool! • Neural network art? • Calista and The Crashroots: Deepdream ◦ Samim Winiger • Details and code ◦ Mordvinstev, Olah, Tyka http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html https://github.com/google/deepdream
  9. Playing Atari (Torch) • Learning ◦ Raw images (4 frames)

    ◦ Score ◦ Controls (per game) ◦ Goal: make score go up ◦ … and that’s it! ◦ Deep Q Learning ▪ Minh et. al. https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner [12]
  10. Winning Kaggle Competitions (Theano) • Heterogenous Data ◦ Time ◦

    Taxi ID, Client ID ◦ Metadata ◦ GPS Points • Predict where a taxi is going • Brebisson, Simon, Auvolat (UMontreal, ENS Cachan, ENS Paris) [13]
  11. Text to Text Translation (Blocks) • Recurrent neural networks •

    Attention mechanism (shown in diagram) • More discussion later • Part of larger movement ◦ Neural Machine Translation, from Cho et. al. ◦ Jointly Learning to Align and Translate, Bahdanau et. al. [14, 15]
  12. Handwriting Generation • Generating Sequences with Recurrent Neural Networks Alex

    Graves http://arxiv.org/abs/1308.0850 • GMM + Bernoulli per timestep • Conditioned on text [16] http://www.cs.toronto.edu/~graves/handwriting.html
  13. Babi RNN (Keras) sentrnn = Sequential() sentrnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE, mask_zero=True)) sentrnn.add(RNN(EMBED_HIDDEN_SIZE,

    SENT_HIDDEN_SIZE, return_sequences=False)) qrnn = Sequential() qrnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE)) qrnn.add(RNN(EMBED_HIDDEN_SIZE, QUERY_HIDDEN_SIZE, return_sequences=False)) model = Sequential() model.add(Merge([sentrnn, qrnn], mode='concat')) model.add(Dense(SENT_HIDDEN_SIZE + QUERY_HIDDEN_SIZE, vocab_size, activation='softmax')) 1 John moved to the bedroom. 2 Mary grabbed the football there. 3 Sandra journeyed to the bedroom. 4 Sandra went back to the hallway. 5 Mary moved to the garden. 6 Mary journeyed to the office. 7 Where is the football? office 2 6 Based on tasks proposed in: Towards AI-Complete Question Answering, Weston et. al Keras recreation of baseline documented at http://smerity.com/articles/2015/keras_qa.html [17]
  14. Conditioning Feedforward • Concatenate features ◦ concatenate((X_train, conditioning), axis=1) ◦

    p(y | X_1 … X_n, L_1 … L_n) • One hot label L (scikit-learn label_binarize) • Can also be real valued • Concat followed with multiple layers to “mix” [18, 19]
  15. Latent Factor Generative Models • Auto-Encoding Variational Bayes D. Kingma

    and M. Welling ◦ Variational Autoencoder (VAE) ◦ Stochastic Backpropagation and Approximate Inference in Deep Generative Models ◦ Rezende, Mohamed, Wierstra ◦ Semi-Supervised Learning With Deep Generative Models ◦ Kingma, Rezende, Mohamed, Welling [26, 27, 28]
  16. Recurrent Neural Network (RNN) • Hidden state (s_t) encodes sequence

    info ◦ p(X_t | X_<t) (in s_t) is compressed representation [18, 19, 20] [16, 21, 22]
  17. Conditioning In Recurrent Networks • RNNs model p(X_t | X_<t)

    • Initial hidden state can condition ◦ p(X_t | X_<t, c) where c is init. hidden state (context) • Condition by concatenating in feedforward ◦ Before recurrence or after • Can do all of the above [18, 19, 20] [16, 21, 22] [24]
  18. Looking Back at Babi RNN Last hidden contains P(S) =

    P(W_st | W_s1...W_st-1) W_st, W_qt always same, so P(W_s1...W_st-1) P(Q) = P(W_qt | W_q1...W_qt-1) Answer, P(O | S, Q) [17, 18]
  19. Memory and Attention • Bidirectional RNN ◦ p(X_t | X_<t,

    X_>t) ◦ Memory cells ◦ Learn how to combine info ◦ Dynamic lookup • Research Directions ◦ Neural Turing Machine ◦ Memory Networks ◦ Differentiable Datastructures [29, 30, 31, 32, 33, 38]
  20. Continued • All comes down to conditional info • What

    problem are we trying to solve? • Q + A ◦ Condition on past Q • Captions ◦ Condition on image • Computing ◦ Condition on relevant memory [29, 30, 31, 32, 33, 34]
  21. References (1) [1] F. Bastien, P. Lamblin, R. Pascanu, J.

    Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio. ”Theano: new features and speed improvements”, Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop. http://arxiv.org/abs/1211.5590 [2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell. “Caffe: Convolutional Architecture for Fast Feature Embedding”. http://arxiv.org/abs/1408.5093 [3] R. Collobert, K. Kavukcouglu, C. Farabet. “Torch7: A Matlab-like Environment For Machine Learning”, NIPS 2011. http://cs.nyu.edu/~koray/files/2011_torch7_nipsw.pdf [4] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun. “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”. http://arxiv.org/abs/1312.6229 [5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. “Going Deeper with Convolutions”. http://arxiv.org/abs/1409.4842 [6] Sander Dieleman, Kyle W. Willett, Joni Dambre. “Rotation-invariant convolutional neural networks for galaxy morphology prediction”. MRAS 2015. http://arxiv.org/abs/1503.07077 [7] A. van den Oord, I. Korshunova, J. Burms, J. Degrave, L. Pigou, P. Buteneers, S. Dieleman. “National Data Science Bowl, Plankton Challenge”. http://benanne.github.io/2015/03/17/plankton.html
  22. References (2) [8] J. Yosinski, J. Clune , A. Nguyen,

    T. Fuchs, H. Lipson. “Understanding Neural Networks Through Deep Visualization”. http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf [9] K. Gregor, I. Danihelka, A. Graves, D. Rezende, D. Wierstra. “DRAW: Directed Recurrent Attention Writer”. http://arxiv.org/abs/1502.04623 [10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. “Generative Adversarial Networks’, NIPS 2014. http://arxiv.org/abs/1406.2661 [11] E. Denton, S. Chintala, A. Szlam, R. Fergus. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”. http://arxiv.org/abs/1506.05751 [12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller. “Playing Atari with Deep Reinforcement Learning”, Nature 2015. https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf [13] A. Brebisson, E. Simon, A. Auvolat. “Taxi Destination Prediction Challenge Winners’ Report.” https://github.com/adbrebs/taxi/blob/master/doc/short_report.pdf [14] K. Cho, B. Merrienboer, C. Gulchere, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”. EMNLP 2014. http://arxiv.org/abs/1406.1078 [15] D. Bahdanau, K. Cho, Y. Bengio. “Neural Machine Translation By Jointly Learning To Align and Translate”. ICLR 2015. http://arxiv.org/abs/1409.0473 [16] A. Graves. “Generating Sequences With Recurrent Neural Networks”, 2013. http://arxiv.org/abs/1308.0850 [17] J. Weston, A. Bordes, S. Chopra, T. Mikolov, A. Rush. “Towards AI-Complete Question Answering”. http://arxiv.org/abs/1502.05698
  23. References (3) [18] Y. Bengio, I. Goodfellow, A. Courville. “Deep

    Learning”, in preparation for MIT Press, 2015. http://www.iro.umontreal.ca/~bengioy/dlbook/ [19] D. Rumelhart, G. Hinton, R. Williams. "Learning representations by back-propagating errors", Nature 323 (6088): 533–536, 1986. http://www.iro. umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf [20] C. Bishop. “Mixture Density Networks”, 1994. http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-NCRG-94-004.ps [21] D. Eck, J. Schmidhuber. “Finding Temporal Structure In Music: Blues Improvisation with LSTM Recurrent Networks”. Neural Networks for Signal Processing, 2002. ftp://ftp.idsia.ch/pub/juergen/2002_ieee.pdf [22] A. Brandmaier. “ALICE: An LSTM Inspired Composition Experiment”. 2008. [23] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur. “Recurrent Neural Network Based Language Model”. Interspeech 2010. http://www. fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf [24] N. Boulanger-Lewandowski, Y. Bengio, P. Vincent. “Modeling Temporal Dependencies in High-Dimensional Sequences: Application To Polyphonic Music Generation and Transcription”. ICML 2012. http://www-etud.iro.umontreal.ca/~boulanni/icml2012 [25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, 1998. http://yann.lecun.com/exdb/mnist/ [26] D. Kingma, M. Welling. “Auto-encoding Variational Bayes”. ICLR 2014. http://arxiv.org/abs/1312.6114 [27] D. Rezende, S. Mohamed, D. Wierstra. “Stochastic Backpropagation and Approximate Inference in Deep Generative Models”. ICML 2014. http: //arxiv.org/abs/1401.4082 [28] A. Courville. “Course notes for Variational Autoencoders”. IFT6266H15. https://ift6266h15.files.wordpress.com/2015/04/20_vae.pdf
  24. [29] A. Graves, G. Wayne, I. Danihelka. “Neural Turing Machines”.

    http://arxiv.org/abs/1410.5401 [30] J. Weston, S. Chopra, A. Bordes. “Memory Networks”. http://arxiv.org/abs/1410.3916 [31] S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. “End-To-End Memory Networks”. http://arxiv.org/abs/1503.08895 [32] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter Ondruska, Mohit Iyyer, Ishaan Gulrajani, Richard Socher. “Ask Me Anything: Dynamic Memory Networks for Natural Language Processing”. http://arxiv.org/abs/1506.07285 [33] Various. Proceedings of Deep learning Summer School Montreal 2015. https://sites.google.com/site/deeplearningsummerschool/schedule [34] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio. “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention” [35] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, Y. Bengio. “A Stochastic Latent Variable Model for Sequential Data”. http://arxiv.org/abs/1506.02216 [36] J. Bayer, C. Osendorfer. “Learning Stochastic Recurrent Networks”. http://arxiv.org/abs/1411.7610 [37] O. Fabius, J. van Amersmoot. “Variational Recurrent Auto-Encoders”. http://arxiv.org/abs/1412.6581 [38] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio. “Attention Based Models For Speech Recognition”. http://arxiv.org/abs/1506.07503 References (4)