Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タス...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Technology
1
120
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
26
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
24
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
5
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
0
10
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
26
[Journal club] Detecting and Preventing Hallucinations in Large Vision Language Models
keio_smilab
PRO
1
71
[IROS24] Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models
keio_smilab
PRO
0
45
[IROS24] Learning-To-Rank Approach for Identifying Everyday Objects Using a Physical-World Search Engine
keio_smilab
PRO
0
77
[RSJ24] Object Retrieval in Large-Scale Indoor Environments Using Dense Text with a Multi-Modal Large Language Model
keio_smilab
PRO
1
430
Other Decks in Technology
See All in Technology
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.2k
SSMRunbook作成の勘所_20241120
koichiotomo
3
160
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
The Rise of LLMOps
asei
7
1.7k
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
600
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
28
13k
『Firebase Dynamic Links終了に備える』 FlutterアプリでのAdjust導入とDeeplink最適化
techiro
0
110
いざ、BSC討伐の旅
nikinusu
2
780
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
300
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
180
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
1.7k
Featured
See All Featured
What's new in Ruby 2.0
geeforr
343
31k
Embracing the Ebb and Flow
colly
84
4.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
YesSQL, Process and Tooling at Scale
rocio
169
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Git: the NoSQL Database
bkeepers
PRO
427
64k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Typedesign – Prime Four
hannesfritz
40
2.4k
Transcript
慶應義塾⼤学 神原元就,杉浦孔明 オフライン軌道⽣成による軌道に基づく Open-Vocabulary物体操作タスクにおける将来成否予測
背景:物体操作ではタスク成否判定が重要 「野球ボールを取って⾼い机に置いて」 8x
背景:物体操作ではタスク成否判定が重要 - 3 - フォークの代わりにスプーンを持ってきて 様々なサブタスク 把持中のフォークを他の場所に置く → 引き出しを開ける →
フォークを把持し引き出しに置く → スプーンを引き出しから取る等 タスク実⾏前に⽣成した軌道の適切さを判定できれば効率性・安全性向上 [Driess+, ICML23] [Schmalstieg+, ICRA24]
関連研究: 既存のタスク成否判定機構は実⾏後の判定が中⼼ - 4 - ⼿法 概要 PaLM-E [Driess+, ICML23]
実世界の観測値を⾔語の埋め込み空間に組み込む [Shirasaka+, ICRA24] 失敗を3種類に分類.タスク失敗の際は再計画を実施 REFLECT [Liu+, CoRL23] 事前に定義された物体の状態に基づき成否判定 [Liu+, ICRA24] 将来の状態に関する潜在表現に基づくタスク成否予測 [Shirasaka+, ICRA24] [Liu+, ICRA24]
問題設定: オフライン⽣成された軌道に基づくタスク成否判定 - 5 - • ⼊⼒:指⽰⽂,1⼈称視点画像,エンドエフェクタの軌道 • 出⼒:物体操作に成功する確率の予測値 Success
Failure Status 0.8 0.2 「⽩いボウルから⾚いリンゴを取って」
提案⼿法: オフライン⽣成された軌道に基づくタスク成否予測機構 - 6 - 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory Encoder 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う
Transformer Decoder
Trajectory Encoder: 軌道を埋め込み,画像による条件付け - 7 - ・ ・ ・ CNN
Pooling λ-Rep. Encoder [Goko+, CoRL24] • 前提 軌道は環境の状況に基づき⽣成 される 1⼈称画像と軌道の特徴量の 対応づけが有効 • 獲得した特徴量はCross- Attention機構により⾔語特徴量 とアラインメント
定量的結果:ベースライン⼿法を精度において上回った - 8 - ▪ SP-RT-1データセット(13Kエピソード,[Goko+, CoRL24])において評価 ▪ w/o CNN:
Trajectory EncoderのCNNをLinearに変更 モデル 精度 [%] 齋藤ら [齋藤+, JSAI24] 74.9±0.79 提案⼿法 w/o CNN 83.2±0.48 提案⼿法 83.4±0.65 “pick orange can from bottom drawer and place on counter” Trajectory Encoderの構造の有効性も確認
定性的結果 (1/2): タスクに対して適切な軌道であることを理解 - 9 - “Place rxbar chocolate into
middle drawer” ▪ チョコレート菓⼦を適切に引き出しに格納 J 適切にタスクの成功を予測
定性的結果 (2/2):物体の位置関係について適切に考慮 - 10 - ▪ オレンジ⽸を動かそうとしている & 倒してしまった “Move
green rice chip bag near orange can” J 適切にタスクの失敗を予測
まとめ - 11 - ▪ 物体操作における,エンドエフェクタの軌道に基づくタスク成否予測 ▪ 新規性 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory
Encoderの導⼊ 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う Transformer Decoder ▪ 精度においてベースライン⼿法を上回った 10x