Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
地方エンジニアの日常 - 業務からコミュニティ活動まで
Search
Tomokazu Kiyohara
May 11, 2019
Research
0
310
地方エンジニアの日常 - 業務からコミュニティ活動まで
WIDE Project 研究会 2019年5月 LT枠
Tomokazu Kiyohara
May 11, 2019
Tweet
Share
More Decks by Tomokazu Kiyohara
See All by Tomokazu Kiyohara
読めるかな?ちょっとレアなRubyの記法
kiyohara
0
64
Lightning Talk イベント運営を いいがにやりたい
kiyohara
0
63
首負担皆無!ゼログラビティ プログラミングスタイル
kiyohara
0
380
北陸で Ruby なお仕事に携わるための3つの戦略
kiyohara
1
1.7k
Algolia in CAMPFIRE
kiyohara
0
3.7k
Web to macOS native app
kiyohara
0
400
金沢アプリ開発塾セミナー資料「テストについて」
kiyohara
1
280
Git インフラ選定事例 - 株式会社クルウィットが GitHub を選んだ理由
kiyohara
0
510
ベッドで技術書を快適に読むただひとつの方法
kiyohara
19
23k
Other Decks in Research
See All in Research
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
240
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
160
Combinatorial Search with Generators
kei18
0
530
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
350
Generative Models 2025
takahashihiroshi
23
13k
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.2k
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
840
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
800
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
680
20250502_ABEJA_論文読み会_スライド
flatton
0
190
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
1
280
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
184
22k
A Modern Web Designer's Workflow
chriscoyier
695
190k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Statistics for Hackers
jakevdp
799
220k
Navigating Team Friction
lara
188
15k
What's in a price? How to price your products and services
michaelherold
246
12k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Thoughts on Productivity
jonyablonski
69
4.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Transcript
ํΤϯδχΞͷৗ ۀ͔ΒίϛϡχςΟ׆ಈ·Ͱ 8*%&1SPKFDUݚڀձ݄-5 *5Ϗδωεϓϥβଂ ਗ਼ݪஐ
ࣗݾհ w ਗ਼ݪஐ w +"*45ത࢜લظमྃ w ࣰాݚڀࣨ w גࣜձࣾΫϧΟοτॴଐ w
ੴݝʑࢢࢢ
͍͑ͨ͜ͱ w ౦ژʹ͚ͯӋ͖͕ͨͪͳֶੜ͞Μͷ಄ͷย۱ʹ ํΤϯδχΞͱ͍͏બࢶΛΓࠐ·͍ͤͨ w ͦΜͳʹѱ͘ͳ͍Α
ΞδΣϯμ w ࣄͷ༰ w ۈͷ͔ͨ͠ w ίϛϡχςΟ׆ಈ
ΞδΣϯμ w ࣄͷ༰ w ۈͷ͔ͨ͠ w ίϛϡχςΟ׆ಈ
ࣄͷ༰ w ݚڀػߏ༷ͷ͓ࣄ w ΫϥυϑΝϯσΟϯάαʔϏε༷ͷ͓ࣄ w ํاۀ༷ͷ͓ࣄ w FUD
ݚڀػߏ༷ͷ͓ࣄ w େن࣮ݧڥ੍ޚػߏͷߏஙิॿ w ͍ΘΏΔडୗ։ൃ w ٕज़ҠసΛ׆༻ͨ͠ηΩϡϦςΟαʔϏεͷߏங w ࣗࣾαʔϏεͷ࣮ӡ༻ w
࠷ઌͷݚڀʹ৮Εͳ͕Β։ൃ w ͨͷ͍͠
ΫϥυϑΝϯσΟϯάαʔϏε༷ͷ ͓ࣄ w ػೳՃ࣮ӡ༻ͷ͓ख͍ w SBJMT DJSDMFDJ BXT HJUIVC TMBDL
IVCPU SPMMCBS BTBOB UFSSBGPSN TFOEHSJE WVFKT w #UP$ͳαʔϏεΛΠϚυΩͳٕज़Λͬͯ࡞Δ w ͨͷ͍͠
ํاۀ༷ͷ͓ࣄ w ༌ग़ʹ͔͔ΔडൃγεςϜͷ৽ن࡞ͱӡ༻ w SBJMT DJSDMFDJ BXT HJUIVC TMBDL IFSPLV
QBQFSUSBJM QPTUHSFTRM SFEJT OFXSFMJD w #UP#ͳαʔϏεΛׂͱ৽͍ٕ͠ज़Λͬͯ࡞Δ w ͨͷ͍͠
ํͰΘΓͱָ͍͠ ͓ࣄͰ͖ͦ͏͡Όͳ͍ʁ
ΞδΣϯμ w ࣄͷ༰ w ۈͷ͔ͨ͠ w ίϛϡχςΟ׆ಈ
ۈͷ͔ͨ͠ w ׂϦϞʔτ w ׂिʹʑࢢͷࣄॴʹग़ۈ w ͦΕҎ֎ͯࣗ͢ͰରԠ w ͓٬༷ͷࣄͱΑΓࣾۀ
ۈͷ͔ͨ͠ w ࿈བྷखஈ4MBDL;PPN(4VJUF .BJM w ࢿྉڞ༗खஈ w (4VJUF
%SJWF w %SPQCPY w ΦϯϓϨϑΝΠϧαʔόʔʹ71/ܦ༝Ͱ
ۈͷ͔ͨ͠ w ϦϞʔτϫʔΫΛࢧ͑Δࣾձతڥ͕ेཱ֬ͨ͠ w ςΫϊϩδʔɾαʔϏεͱΑΓ w Ϗδωεʹ͔͔ΘΔਓͷʮҙࣝʯมΘͬͨ w ϦϞʔτͰ͍͍ΑͶɺͱ͍͏ίϯςΩετ
w ͪΖΜ՝͋Δ͕ӽ͑ΒΕͳ͍͜ͱͳ͍ w ͜Ε͔Βઌ͞Βʹӽ͑͘͢ͳΔͣ
ॴʹറΒΕͳ͍ۈ Ͱ͖ͦ͏͡Όͳ͍ʁ
ΞδΣϯμ w ࣄͷ༰ w ۈͷ͔ͨ͠ w ίϛϡχςΟ׆ಈ
ίϛϡχςΟ׆ಈ w ͍͔ͭ͘ͷίϛϡχςΟͰӡӦͱͯ͠׆ಈ w ,BOB[BXBSC w $PEFGPS,BOB[BXB
,BOB[BXBSC w 3VCZษڧձίϛϡχςΟʜͱͯ͠͡·ͬͨ w ͍·Ͱ3VCZ͚ͩͰͳ͋͘ΒΏΔٕज़ʹؔ͢Δใަͷ w ຖ݄ճNFFUVQΠϕϯτΛ࣮ࢪʢ݄Ͱճͷ։࠵ʣ w ࣾձਓ͚ͩͰͳֶ͘ੜ͞Μଟ͘ࢀՃ w
ۚେֶɺۚۀେֶɺੴߴઐFUD w +"*45मྃੜଟʂ w IUUQTL[SCPSH
$PEFGPS,BOB[BXB w ʮγϏοΫςοΫʯͱ͍͏ΩʔϫʔυͷͱɺҬͷ՝ΛҬ ʹॅΉࢢຽ͕ࣗ*5σβΠϯͷྗΛ͍ͪͯࣗओతʹղܾ͢Δ Λ࡞Δ͜ͱΛඪͱͯ͠׆ಈ͢ΔҰൠࣾஂ๏ਓ w ۚࢢͷʮ͝ΈͷνΣοΫπʔϧʯΛ࡞ w શࠃͷίϛϡχςΟ͕ಠࣗ൛Λ࡞ w
ۚࢢͱڞಉͰֶੜ͚ແྉΞϓϦ։ൃษڧձΛ։࠵ w ຖ݄ճNFFUVQΠϕϯτʢ$JWJD)BDL/JHIUʣΛ࣮ࢪ w IUUQDPEFGPSLBOB[BXBPSH
Ͱ׆ಈ͢Δ༷ʑͳίϛϡχςΟ w +"846(,BOB[BXBʢੴʣ w ,BOB[BXB*P5ʢੴʣ w ;͘͘ձʢҪʣ w 5PZBNBSCʢࢁʣ w
)PLVSJLV/&5ʢݝʣ w FUD
ํʹ ಉ࢜ͷ͍ؒΔΑʁ
͍͑ͨ͜ͱ w ౦ژʹ͚ͯӋ͖͕ͨͪͳֶੜ͞Μͷ಄ͷย۱ʹ ํΤϯδχΞͱ͍͏બࢶΛΓࠐ·͍ͤͨ w ͦΜͳʹѱ͘ͳ͍Α
ิ w ౦ژΑΓʮ͍͍ʯͱ͍͏Ͱͳ͍Ͱ͢ w ྑ͍ͱ͜Ζ͋Δ͠ѱ͍ͱ͜Ζ͋Δ w બࢶΛ૿͍͚ͯͨͩ͠Ε
ิ w ίϛϡχςΟͷنʹؔͯ͠ਓޱͷͳͷͰԿ ΛͲ͏ߟ͑ͯ౦ژͷํ͕͍͍Ͱ͢ w ͱ͍͑ɺθϩ͡Όͳ͍ΜͩΑʂͱݴ͍͍ͨ w ࣄ༰ۈܗଶʹ͍ͭͯɺΫϧΟοτ͚ͩ ͕ಛผͱ͍͏͜ͱͳ͍ɺͣʂ
w ͓ͦΒͨ͘ͿΜ͖ͬͱ
͓ΘΓ