Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CycleGAN and InstaGAN
Search
kiyo
November 21, 2019
Technology
0
1.5k
CycleGAN and InstaGAN
#8【画像処理 & 機械学習】論文LT会で発表した内容です。GANを用いた画像変換手法である InstaGAN と CycleGAN の紹介です。
kiyo
November 21, 2019
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
3
Active Retrieval Augmented Generation
kiyohiro8
3
850
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
410
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
550
TransGAN: Two Transformers Can Make One Strong GAN
kiyohiro8
0
360
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
980
Attention on Attention for Image Captioning
kiyohiro8
1
510
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
160
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
テストを軸にした生き残り術
kworkdev
PRO
0
210
💡Ruby 川辺で灯すPicoRubyからの光
bash0c7
0
120
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
890
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
450
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
270
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
420
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
160
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
210
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
350
研究開発と製品開発、両利きのロボティクス
youtalk
1
530
AWSで始める実践Dagster入門
kitagawaz
1
680
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Optimizing for Happiness
mojombo
379
70k
For a Future-Friendly Web
brad_frost
180
9.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Thoughts on Productivity
jonyablonski
70
4.8k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
KATA
mclloyd
32
14k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
CycleGAN and InstaGAN 第8回画像処理 & 機械学習】論文LT会 2019年11月21日(木) @hrs1985
自己紹介 twitter : @hrs1985 https://qiita.com/hrs1985 https://kiyo.qrunch.io/ 機械学習エンジニアをしています。 最近転職して7月から東京で働いてます。 前々職では実験生物学やってました。 •
深層生成モデル、画像の変換 • 強化学習 • 生物学・化学への機械学習の応用 に興味があります。
紹介する論文 CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (ICCV
2017) https://arxiv.org/abs/1703.10593 InstaGAN InstaGAN: Instance-aware Image-to-Image Translation (ICLR 2019) https://arxiv.org/abs/1812.10889
画像のスタイル変換 Paired 各ドメインの画像が対になっている Unpaired 各ドメインの画像が対になっていない あるドメインの画像を別のドメインへの対応する画像に変換する操作
CycleGAN による画像変換 左: CycleGAN の論文中の例、右: 自分で実験してみた例
CycleGAN 2つのGeneratorはそれぞれX→Y、Y→Xの変換を行い、 Discriminatorはそれが元々そのドメインの画像だったか Generatorによって変換された画像かを見破る。
CycleGAN の Loss Domain loss (GAN Loss) Content Loss (Cycle
Consistency Loss)
CycleGAN
CycleGAN の問題点 ・オブジェクト形状が大きく変わるような変換はできない。 ・変換するべきオブジェクトが画像のどの部分であるかを明示して変換することはできない。
InstaGAN ・CycleGAN で失敗しやすい、オブジェクト形状が変化するような変換にも対応できる。 ・該当するインスタンスのうち、一部だけを変換することもできる。
InstaGAN
Generator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取っておく 3.
画像用の Decoder に画像特徴とマスク特徴の総和を 入力して変換された画像を得る 4. マスク用の Decoder に画像特徴とマスク特徴の総和と マスク特徴を入力して変換されたマスクを得る
Discriminator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取る 3.
Classifier に画像特徴とマスク特徴の総和を入力して判 別する
InstaGAN の Loss Domain Loss (GAN Loss) Content Loss Domain
Loss: target domain っぽいかどうかを判別するための Loss Content Loss: 元画像の内容や文脈を保持するための Loss
Content Loss の中身 ドメイン X の画像を一旦 Y に変換してからもう一度 X に変換したら元画像戻って欲しいという願い
(CycleGAN の Cycle Consistency Loss と同じ) GXY/GYX はそれぞれドメイン X/Y の画像についてのみ変更してほしいという願い (元々 Y/X だった画像は変更しないでほしい ) マスク領域以外の場所は変更しないでほしいという願い
Sequential Translation 一度に全てのマスクを変換するのではなく、 各 iteration では少数のマスクだけを変換する手法を使っています。
Sequential Translation One: 全てのマスクを 1 iteration で変換 Seq: Sequential に少数ずつ変換 train時/inference時 Train
時にも Inference 時にも Sequential Translation を行った方がよいらしい (一番右)。
結果 ズボン⇔スカートの変換 CycleGANよりも綺麗です。 また、右側中段のように一人分だけ変換することもできています。
結果 ヒツジ⇔キリンの変換 ちゃんとヒツジとキリンの形になっています。 また、InstaGAN では背景部分の変化が小さいです (左側上段など)
結果 ウマ⇔車の変換 この変換の出来は微妙に見えますが論文中では上手くいってる扱いぽいです。 確かにCycleGANよりはマシに見えます。
おまけ 自分で実装してみるために参考に著者実装を見たのですが実装が酷すぎて読むのがつらいです。 各メソッドの全ての変数に selfがついているのでメソッドの中身だけ追っても処理内容が見えづらい あとPyTorchの使い方覚えてほしい
参考 CycleGAN (https://qiita.com/hrs1985/items/050acb15ce33675f07ec) CycleGANを用いたスタイル変換 (https://qiita.com/hrs1985/items/926f9c4e635aac659675) CycleGANを用いたスタイル変換 (2) リベンジ編 (https://qiita.com/hrs1985/items/820d9b0b919fe0425e46) CycleGANのPytorch実装
(https://github.com/kiyohiro8/CycleGAN-pytorch) CycleGANの実装はあまりカッコよくないので色々修正したい。 InstaGANの実装も今やっているので上手くできたら githubに上げます。