Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CycleGAN and InstaGAN
Search
kiyo
November 21, 2019
Technology
0
1.3k
CycleGAN and InstaGAN
#8【画像処理 & 機械学習】論文LT会で発表した内容です。GANを用いた画像変換手法である InstaGAN と CycleGAN の紹介です。
kiyo
November 21, 2019
Tweet
Share
More Decks by kiyo
See All by kiyo
Active Retrieval Augmented Generation
kiyohiro8
3
620
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
310
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
430
TransGAN: Two Transformers Can Make One Strong GAN
kiyohiro8
0
270
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
930
Attention on Attention for Image Captioning
kiyohiro8
1
450
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
120
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.2k
Other Decks in Technology
See All in Technology
中規模・ミドルTier開発組織におけるDevRelの戦略と実行と成果 - DevRel Guild Conference Mini -
leveragestech
2
280
2024年版 運用者たちのLLM
nwiizo
3
370
Binary Authorizationと友達になろう / Let's be friends with Binary Authorization
iselegant
2
140
Azure SQL Database Hyperscale HA レプリカの監視
sansantech
PRO
0
210
「名前解決」から振り返るAmazon VPC
yuki_ink
0
320
Autonomous Database Cloud 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
15
39k
The XZ Backdoor Story
fr0gger
0
1.8k
ことばをそろえる / Bridging the Terminology Gap
amaotone
5
1k
Discover Your Tailored Platform Strategy with Real-World Practice
hhiroshell
1
140
データウェアハウス製品のSnowflakeでPythonが動くって知ってました?
foursue
1
160
なぜクラウドサービスで Web コンソールを提供するのか
shuta13
4
1.9k
Dive Deep in Cloud Run: Automatic Base Image update
aoto
PRO
0
900
Featured
See All Featured
Building an army of robots
kneath
302
42k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Imperfection Machines: The Place of Print at Facebook
scottboms
263
13k
Product Roadmaps are Hard
iamctodd
PRO
48
10k
Keith and Marios Guide to Fast Websites
keithpitt
408
22k
Bootstrapping a Software Product
garrettdimon
PRO
304
110k
Fireside Chat
paigeccino
31
2.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
325
21k
Agile that works and the tools we love
rasmusluckow
327
20k
How to train your dragon (web standard)
notwaldorf
85
5.6k
Designing the Hi-DPI Web
ddemaree
278
34k
A better future with KSS
kneath
235
17k
Transcript
CycleGAN and InstaGAN 第8回画像処理 & 機械学習】論文LT会 2019年11月21日(木) @hrs1985
自己紹介 twitter : @hrs1985 https://qiita.com/hrs1985 https://kiyo.qrunch.io/ 機械学習エンジニアをしています。 最近転職して7月から東京で働いてます。 前々職では実験生物学やってました。 •
深層生成モデル、画像の変換 • 強化学習 • 生物学・化学への機械学習の応用 に興味があります。
紹介する論文 CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (ICCV
2017) https://arxiv.org/abs/1703.10593 InstaGAN InstaGAN: Instance-aware Image-to-Image Translation (ICLR 2019) https://arxiv.org/abs/1812.10889
画像のスタイル変換 Paired 各ドメインの画像が対になっている Unpaired 各ドメインの画像が対になっていない あるドメインの画像を別のドメインへの対応する画像に変換する操作
CycleGAN による画像変換 左: CycleGAN の論文中の例、右: 自分で実験してみた例
CycleGAN 2つのGeneratorはそれぞれX→Y、Y→Xの変換を行い、 Discriminatorはそれが元々そのドメインの画像だったか Generatorによって変換された画像かを見破る。
CycleGAN の Loss Domain loss (GAN Loss) Content Loss (Cycle
Consistency Loss)
CycleGAN
CycleGAN の問題点 ・オブジェクト形状が大きく変わるような変換はできない。 ・変換するべきオブジェクトが画像のどの部分であるかを明示して変換することはできない。
InstaGAN ・CycleGAN で失敗しやすい、オブジェクト形状が変化するような変換にも対応できる。 ・該当するインスタンスのうち、一部だけを変換することもできる。
InstaGAN
Generator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取っておく 3.
画像用の Decoder に画像特徴とマスク特徴の総和を 入力して変換された画像を得る 4. マスク用の Decoder に画像特徴とマスク特徴の総和と マスク特徴を入力して変換されたマスクを得る
Discriminator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取る 3.
Classifier に画像特徴とマスク特徴の総和を入力して判 別する
InstaGAN の Loss Domain Loss (GAN Loss) Content Loss Domain
Loss: target domain っぽいかどうかを判別するための Loss Content Loss: 元画像の内容や文脈を保持するための Loss
Content Loss の中身 ドメイン X の画像を一旦 Y に変換してからもう一度 X に変換したら元画像戻って欲しいという願い
(CycleGAN の Cycle Consistency Loss と同じ) GXY/GYX はそれぞれドメイン X/Y の画像についてのみ変更してほしいという願い (元々 Y/X だった画像は変更しないでほしい ) マスク領域以外の場所は変更しないでほしいという願い
Sequential Translation 一度に全てのマスクを変換するのではなく、 各 iteration では少数のマスクだけを変換する手法を使っています。
Sequential Translation One: 全てのマスクを 1 iteration で変換 Seq: Sequential に少数ずつ変換 train時/inference時 Train
時にも Inference 時にも Sequential Translation を行った方がよいらしい (一番右)。
結果 ズボン⇔スカートの変換 CycleGANよりも綺麗です。 また、右側中段のように一人分だけ変換することもできています。
結果 ヒツジ⇔キリンの変換 ちゃんとヒツジとキリンの形になっています。 また、InstaGAN では背景部分の変化が小さいです (左側上段など)
結果 ウマ⇔車の変換 この変換の出来は微妙に見えますが論文中では上手くいってる扱いぽいです。 確かにCycleGANよりはマシに見えます。
おまけ 自分で実装してみるために参考に著者実装を見たのですが実装が酷すぎて読むのがつらいです。 各メソッドの全ての変数に selfがついているのでメソッドの中身だけ追っても処理内容が見えづらい あとPyTorchの使い方覚えてほしい
参考 CycleGAN (https://qiita.com/hrs1985/items/050acb15ce33675f07ec) CycleGANを用いたスタイル変換 (https://qiita.com/hrs1985/items/926f9c4e635aac659675) CycleGANを用いたスタイル変換 (2) リベンジ編 (https://qiita.com/hrs1985/items/820d9b0b919fe0425e46) CycleGANのPytorch実装
(https://github.com/kiyohiro8/CycleGAN-pytorch) CycleGANの実装はあまりカッコよくないので色々修正したい。 InstaGANの実装も今やっているので上手くできたら githubに上げます。