Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
360
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
4
Active Retrieval Augmented Generation
kiyohiro8
3
860
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
420
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
560
CycleGAN and InstaGAN
kiyohiro8
0
1.5k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
980
Attention on Attention for Image Captioning
kiyohiro8
1
510
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
170
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
アイテムレビュー機能導入からの学びと改善
zozotech
PRO
0
170
incident_commander_demaecan__1_.pdf
demaecan
0
140
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
240
Performance Insights 廃止から Database Insights 利用へ/transition-from-performance-insights-to-database-insights
emiki
0
280
このままAIが発展するだけでAGI達成可能な理由
frievea
0
110
物体検出モデルでシイタケの収穫時期を自動判定してみた。 #devio2025
lamaglama39
0
130
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
320
AWS IoT 超入門 2025
hattori
0
340
リセラー企業のテクサポ担当が考える、生成 AI 時代のトラブルシュート 2025
kazzpapa3
1
350
データ戦略部門 紹介資料
sansan33
PRO
1
3.7k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.2k
React19.2のuseEffectEventを追う
maguroalternative
0
260
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Documentation Writing (for coders)
carmenintech
75
5.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Scaling GitHub
holman
463
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
620
RailsConf 2023
tenderlove
30
1.2k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Balancing Empowerment & Direction
lara
4
690
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings