Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
360
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
12
Active Retrieval Augmented Generation
kiyohiro8
3
900
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
440
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
580
CycleGAN and InstaGAN
kiyohiro8
0
1.5k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
990
Attention on Attention for Image Captioning
kiyohiro8
1
530
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
180
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.4k
Other Decks in Technology
See All in Technology
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
140
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
230
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
170
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
510
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
540
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
130
LayerX QA Night#1
koyaman2
0
290
The State of AI Agent Security:2025年の総括と2026年の宿題
pict3
0
110
Microsoft Agent Frameworkの可観測性
tomokusaba
1
120
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
190
Building Serverless AI Memory with Mastra × AWS
vvatanabe
1
800
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
2.1k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Designing for humans not robots
tammielis
254
26k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Designing for Performance
lara
610
70k
The browser strikes back
jonoalderson
0
240
WCS-LA-2024
lcolladotor
0
390
How to Ace a Technical Interview
jacobian
281
24k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Rails Girls Zürich Keynote
gr2m
95
14k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings