Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraph Templatesによる効率的なワークフロー構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Technology
0
210
LangGraph Templatesによる効率的なワークフロー構築
機械学習の社会実装勉強会第40回 (
https://machine-learning-workshop.connpass.com/event/334075/
) の発表資料です.
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
48
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
75
ローカルLLMでファインチューニング
knishioka
0
620
自作MCPサーバ入門
knishioka
0
34
成功と失敗の実像と生成AI時代の展望
knishioka
0
62
MCPが変えるAIとの協働
knishioka
1
210
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
230
DeepSeekを使ったローカルLLM構築
knishioka
0
230
業務ツールをAIエージェントとつなぐ - Composio
knishioka
1
260
Other Decks in Technology
See All in Technology
スプリントレトロスペクティブはチーム観察の宝庫? 〜チームの衝突レベルに合わせたアプローチ仮説!〜
electricsatie
1
160
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
9
4.2k
生成AI時代のデータ基盤
shibuiwilliam
6
3.6k
テストを軸にした生き残り術
kworkdev
PRO
0
160
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
2
290
異業種出身エンジニアが気づいた、転向して十数年経っても変わらない自分の武器とは
macnekoayu
0
280
AIエージェントの活用に重要な「MCP (Model Context Protocol)」とは何か
masayamoriofficial
0
290
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
0
180
AI駆動開発に向けた新しいエンジニアマインドセット
kazue
0
190
役割は変わっても、変わらないもの 〜スクラムマスターからEMへの転身で学んだ信頼構築の本質〜 / How to build trust
shinop
0
160
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
280
まだ間に合う! StrandsとBedrock AgentCoreでAIエージェント構築に入門しよう
minorun365
PRO
11
910
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
224
9.9k
4 Signs Your Business is Dying
shpigford
184
22k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Building Adaptive Systems
keathley
43
2.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Music & Morning Musume
bryan
46
6.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Navigating Team Friction
lara
189
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
LangGraph Templatesによる 効率的なワークフロー構築 2024/10/26 機械学習の社会実装勉強会 第40回 1
LangGraph Studio Template 2
LangGraph Template LangGraph Templateは、PythonとJavaScriptで利用可能なテンプレートレポジトリ 実体はGitHub上のリポジトリ: (langgraph:///template? githubUrl=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Freact-agent) 3
なぜLangGraph Templateが必要か? 簡単な導入とカスタマイズ: テンプレートは、リポジトリをクローンすることで内 部の機能を簡単に修正できるため、プロンプトやロジックの変更が容易 デバッグと展開のしやすさ: テンプレートはLangGraph Studioでデバッグし、ワン クリックでLangGraph Cloudに展開できる構造
高いカスタマイズ性: エージェントの内部コードを自由に変更できるため、開発者 が自分のニーズに合わせた詳細な制御可能 4
現在提供されているTemplate New LangGraph Project: https://github.com/langchain-ai/new-langgraph-project Langchain Memory Agent: https://github.com/langchain-ai/memory-agent Data
Enrichment: https://github.com/langchain-ai/data-enrichment React Agent: https://github.com/langchain-ai/react-agent Retrieval Agent Template: https://github.com/langchain-ai/retrieval-agent-template 5
New LangGraph Project 概要: LangGraph Studio用にデザインされたChatBot。永続的なチャットメモリを保持。 機能: ノードとエッジで表現されるデータフローの可視化 複雑なワークフローを細かく制御できるカスタマイズ性 エージェントの組織化と管理
利点: テンプレートを活用した迅速な開発 Studioでのデバッグとクラウドへのワンクリック展開 6
Langchain Memory Agent 概要: 過去のやり取りや状態を記憶し、長期タスクや対話の継続を可能にするエージェント 機能: 会話やタスクの履歴を記憶するメモリ機能 過去の情報を利用してインタラクションを最適化 長期タスクや複雑な対話の管理 利点:
パーソナライズされたやり取りの実現 タスクの進行状況に応じた応答の提供 長期的な対話に適した設計 7
Data Enrichment 概要: 外部情報を使って既存データを補完・強化するエージェント 機能: 外部APIやデータソースからの情報取得 取得データの分析と統合 自動的なデータ補完プロセス 利点: データの価値と精度の向上
研究やデータ収集に適した設計 複数のデータソースを活用した情報の強化 8
React Agent 概要: リアルタイムで環境の変化に反応し、動的に行動するエージェント 機能: 状況に応じたリアルタイム応答 環境変化に基づく動的な意思決定 タスクを繰り返し実行し、適切なツールを選択 利点: リアルタイム処理が必要なアプリケーションに最適
環境に即応するインタラクティブなエージェント設計 高い応答性 9
Retrieval Agent Template 概要: 情報取得に特化したエージェントのテンプレート 機能: クエリに基づくデータ検索と取得 外部ソースや特定のデータセットからの情報抽出 検索結果の最適化と自動化 利点:
カスタマイズ可能な情報取得エージェントの作成 データ検索と取得プロセスの効率化 特定データソースに簡単に適応 10