Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression ...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
82
R を用いた分析(補講) (1) — 重回帰分析 / Multiple Regression Analysis
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
29
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
ふわっとした考えを仮説にするまでのステップ
tumada
PRO
16
7.2k
Cobe Associe: Who we are? /コンサル・市場調査・人材紹介のCobe Associe
nozomi
6
19k
comorebi_cultuerdeck_2025
comorebi_tokyo
0
210
イクシアス株式会社 会社紹介資料
ixyas
0
1.3k
署内デジタルインフォボードの開発
tokyo_metropolitan_gov_digital_hr
1
360
HireRoo Culture Deck(日本語)
kkosukeee
2
27k
CompanyDeck_v6.pdf
xid
3
17k
会社紹介資料 / ProfileBook
gpol
4
26k
メドピアグループ紹介資料
medpeer_recruit
10
120k
ドローンを活用した汚泥焼却炉内点検のDX
tokyo_metropolitan_gov_digital_hr
1
370
職員給与等実態調査のDX
tokyo_metropolitan_gov_digital_hr
0
390
SUN METALON会社紹介・採用説明資料
shindoyuto
0
530
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
470
Being A Developer After 40
akosma
89
590k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Become a Pro
speakerdeck
PRO
26
5.1k
Transcript
generated by Stable Diffusion XL v1.0 2023 11 R (
) (1) — (WBS) 2023 11 R ( ) (1) — — 2024-01 – p.1/11
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 11 R ( ) (1) — — 2024-01
– p.2/11
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 11 R ( ) (1) — — 2024-01 – p.3/11
( ) R ( ) = a + b1 ×
+ b2 × + e 2023 11 R ( ) (1) — — 2024-01 – p.4/11
(1/2) “ .txt” g <- read.table(" .txt", header=T) # g
# boxplot(g) # plot(g) # cor.test(g$ , g$ ) 2023 11 R ( ) (1) — — 2024-01 – p.5/11
( ) ፉ㌟㛗 ∗㌟㛗 ẕ㌟㛗 150 155 160 165 170
175 : 158.37cm : 169.02cm : 155.2cm 2023 11 R ( ) (1) — — 2024-01 – p.6/11
( ) ፉ㌟㛗 160 165 170 175 152 156 160
164 160 165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 . . . . . . 2023 11 R ( ) (1) — — 2024-01 – p.7/11
(2/2) m <- lm(g$ ~ g$ + g$ ) #
+ m # summary(m) # “Multiple R-squared” “Adjusted R-squared” 30% 2023 11 R ( ) (1) — — 2024-01 – p.8/11
( pp.291–298) R2 = 1 − SSresidual SStotal = 1
− n i=1 (yi − ˆ yi)2 n i=1 (yi − ¯ y)2 R∗2 = 1 − SSresidual n−k−1 SStotal n−1 = 1 − (1 − R2)(n − 1) n − k − 1 ( k ) 2023 11 R ( ) (1) — — 2024-01 – p.9/11
(b1 b2 ) sg <- scale(g) # sg <- data.frame(sg)
# m <- lm(sg$ ~ sg$ + sg$ ) # summary(m) # . . . : 3.951e-01 : 3.436e-01 ^^; ^^; 2023 11 R ( ) (1) — — 2024-01 – p.10/11
2023 11 R ( ) (1) — — 2024-01 –
p.11/11