Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
散布図と相関(と Git) / Scatter plots and correlations ...
Search
Kenji Saito
PRO
November 28, 2024
Technology
0
16
散布図と相関(と Git) / Scatter plots and correlations (and Git)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第5回で使用したスライドです。
Kenji Saito
PRO
November 28, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
23
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
6
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
38
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
54
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
18
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
11
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
10
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (supplementary) (1) - Multiple regression analysis
ks91
PRO
0
9
Other Decks in Technology
See All in Technology
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1k
Jetpack Composeで始めるServer Cache State
ogaclejapan
2
170
kargoの魅力について伝える
magisystem0408
0
200
Wantedly での Datadog 活用事例
bgpat
1
430
10個のフィルタをAXI4-Streamでつなげてみた
marsee101
0
160
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
180
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
520
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
Storage Browser for Amazon S3
miu_crescent
1
140
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
160
なぜCodeceptJSを選んだか
goataka
0
160
watsonx.ai Dojo #5 ファインチューニングとInstructLAB
oniak3ibm
PRO
0
160
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Speed Design
sergeychernyshev
25
670
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
BBQ
matthewcrist
85
9.4k
KATA
mclloyd
29
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Become a Pro
speakerdeck
PRO
26
5k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
A better future with KSS
kneath
238
17k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 5 ( Git) (WBS) 2024 5 ( Git) — 2024-11 – p.1/16
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 5 ( Git) — 2024-11 – p.2/16
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 5 ( Git) — 2024-11 – p.3/16
RStudio Git 2 2024 5 ( Git) — 2024-11 –
p.4/16
RStudio Git RStudio Git Git ( GPL) GitHub Git (
) RStudio pull 2024 5 ( Git) — 2024-11 – p.5/16
Git RStudio Git (OS ) Linux : ( OK) macOS
: Xcode (Apple ) Xcode AppStore https://apps.apple.com/jp/app/xcode/id497799835 Windows : https://gitforwindows.org OK https://github.com/ks91/cda-demo Git ( ) 2024 5 ( Git) — 2024-11 – p.6/16
(scatter plot) 2 x y ( ) (◦ ) plot
(verb): mark out or allocate (points) on a graph cda-demo “ .R” 1 2024 5 ( Git) — 2024-11 – p.7/16
“ .txt” 1 1 <- read.table(" .txt", header=T) plot( 1,
xlim=c(0, 100), ylim=c(0, 100), xlab=" ", ylab=" ", main=" ") : 2024 5 ( Git) — 2024-11 – p.8/16
0 20 40 60 80 100 0 20 40 60
80 100 ṇࡢ┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ ᩘᏛࡢヨ㦂⤖ᯝ 2024 5 ( Git) — 2024-11 – p.9/16
“ .txt” 2 2 <- read.table(" .txt", header=T) plot( 2,
xlim=c(0, 20.0), ylim=c(13.0, 18.0), xlab=" ", ylab="100m ( )", main=" ") : 2024 5 ( Git) — 2024-11 – p.10/16
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) 2024 5 ( Git) — 2024-11 – p.11/16
1 2 plot( 1$ , 2$ , xlim=c(0, 100), ylim=c(13.0,
18.0), xlab=" ", ylab="100m ( )", main=" ") ( ) : 2024 5 ( Git) — 2024-11 – p.12/16
0 20 40 60 80 100 13 14 15 16
17 18 ↓┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ 100m㉮ࡢࢱ࣒ (⛊) 2024 5 ( Git) — 2024-11 – p.13/16
3 1 2 3 3 <- data.frame( = 1$ ,
= 1$ , = 2$ , = 2$ ) plot( 3) 2 12 : plot 2024 5 ( Git) — 2024-11 – p.14/16
ⱥㄒ 20 40 60 80 20 40 60 80 100
13 14 15 16 17 20 40 60 80 ᩘᏛ 㐠ື㛫 0 5 10 15 13 14 15 16 17 20 40 60 80 100 0 5 10 15 ▷㊥㞳 2024 5 ( Git) — 2024-11 – p.15/16
2024 5 ( Git) — 2024-11 – p.16/16