Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロからわかるリザバーコンピューティング
Search
Yuta Kurotaki
December 14, 2023
Research
1
1.3k
ゼロからわかるリザバーコンピューティング
コードとカクテル:GMOペパボのAIナイト - LT大忘年会 -
https://gmo.connpass.com/event/304045/
Yuta Kurotaki
December 14, 2023
Tweet
Share
More Decks by Yuta Kurotaki
See All by Yuta Kurotaki
CTO Night & Day 2024 Product Feedback Lunch
kurotaky
1
120
SUZURI DX 2023
kurotaky
0
170
How GitHub Copilot Transforms Development Productivity
kurotaky
18
13k
The story of repairing my junk keyboard with The kinT keyboard controller
kurotaky
0
1.6k
DevRel_Japan CONFERENCE 2023
kurotaky
1
1.8k
ctoa-wakate-01-company-introduction
kurotaky
0
270
Ethereum for Ruby
kurotaky
2
1.9k
NFTコンテンツでオリジナルグッズ作成を支える技術
kurotaky
1
160
SIG-BTI-2022-kickoff
kurotaky
0
270
Other Decks in Research
See All in Research
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
350
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
600
NLP2025参加報告会 LT資料
hargon24
1
300
Weekly AI Agents News! 1月号 アーカイブ
masatoto
1
270
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
330
DeepSeek-R1の論文から読み解く背景技術
personabb
3
590
90 分で学ぶ P 対 NP 問題
e869120
16
7k
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
230
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
380
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
180
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
170
ことばの意味を計算するしくみ
verypluming
11
2.4k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
The Language of Interfaces
destraynor
158
25k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
Designing for Performance
lara
608
69k
Statistics for Hackers
jakevdp
799
220k
Balancing Empowerment & Direction
lara
0
43
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Transcript
1 ゼロからわかる リザバーコンピューティング 黒瀧 悠太 コードとカクテル:GMOペパボのAIナイト - LT⼤忘年会 - 2023.12.14
2 ⾃⼰紹介 黒瀧 悠太 Yuta Kurotaki • SUZURI事業部シニアエンジニアリングリード • GMOインターネットグループ
デベロッパーエキスパート • リザバーコンピューティングに関する 勉強や開発をしている • SNS : @kurotaky • ⾳楽が好き、ドラマーです。
SUZURI 3
SUZURI 4
SUZURI 5
6 https://jab.tokyo/
7
8 アジェンダ 1. リザバーコンピューティングについて 2. エコーステートネットワーク概要 3. まとめ
リザバーコンピューティングについて • 時系列データの入力に対する 複雑な動的応答を生成する計算手法 • 波紋パターンは入力された時系列 情報を表し、リザバーによる状態変化 を分析することで、時系列データを認識 し解析する リザバーコンピューティングとは?
9 水面におはじきを投げ入れると、複雑な波紋が広がる 知 識の森 リザバーコンピューティング , 電子情報通信学会 . 時系列の入力をリザ バーに与えると、入力の 大きさや順序に応じた動 的な波紋のパターンが 生じる
リザバーコンピューティングについて 10 ニューラルネットワークとリザバーコンピューティング
リザバーコンピューティングについて 1986年 Jordan ネットワーク 1989年 Real-Time Recurrent Learning (RTRL) 1990年
Elman ネットワーク Backpropagation Through Time (BPTT) 1997年 ⻑‧短期記憶 (LSTM) 2001年 エコーステートネットワーク (ESN) 2002年 リキッドステートマシン (LSM) 2014年 ゲート付き回帰型ユニット (GRU) Recurrent Neural Network の歴史 11 リザバーコンピューティング|森北出版株式会社 , p.9 表1.1を参考に作成 Jaeger, GMD Report. 148, 34 (2001) Maass, et al. Neural Computation. 14, 11 (2002)
リザバーコンピューティングについて 深層学習 (Deep Neural Network) との違い 12 学習コスト 計算性能 リザバー
コンピューティング ESN、LSM リザバーコンピューティング|森北出版株式会社 , p.6 図 1.3 を参考に作成 線形学習器 線形回帰モデルなど ディープラーニングモ デル RNN、LSTM、GRU
エコーステートネットワーク概要 エコーステートネットワーク (ESN) 13 Introduction to Next Generation Reservoir Computing
https://www.youtube.com/watch?v=wbH4En-k5Gs
エコーステートネットワーク概要 Input Layer と Reservoir 14 入力層とリザバーの接続 ランダムで固定された 重みを持つ接続 リザバー内のニューロン
ランダムで固定された リカレント接続
エコーステートネットワーク概要 出力層 トレーニング可能な 出力重みを持つ Reservoir と Output Layer 15
エコーステートネットワーク概要 リッジ回帰の出⼒重みの導出過程 16 損失関数 損失関数を微分 Woutについて解く 正規化項 を加えた自己相関行列の逆行列を計算
エコーステートネットワーク概要 リードアウトのみ調整 ESNでは、リザバーから出力層への重みだけ調整される。その ため計算が速く、消費電力も少ない → エッジデバイスでの応用、環境に優しい など エコーステートネットワークの特徴 17
エコーステートネットワーク概要 医療: EEG, ECG, EMG, ⼼拍, 眼球運動など 画像: ⼿書き⽂字画像, 動画像
⾳声: 発話, ⾳響, ⾳楽 機械: モーター, ロボット その他にも応⽤例は沢⼭、物理リザバーもある リザバーコンピューティングの応⽤ 18
エコーステートネットワーク概要 サンプルプログラム 19 https://mantas.info/code/simple_esn/ Mackey-Glass 方程式 複雑で非線形な時間系列データをどの程度正確に予 測できるかをテスト
エコーステートネットワーク概要 サンプルプログラム 20
エコーステートネットワーク概要 resSizeでの⽐較 21 resSize = 50 resSize = 500
エコーステートネットワーク概要 resSize = 1000 22
エコーステートネットワーク概要 resSize = 10 23
エコーステートネットワーク概要 resSize = 10000 24 計算がおわりません! (発表に間に合わなさそうなので止めた)
エコーステートネットワーク概要 - ⾮線形系 - ⾮線形な振る舞いを⽰し、複雑なパターンや信号を処理 - エコーステート性 - リザバーの現在の状態は過去の入力に影響される -
時間が経つにつれ、その影響は消失 - ⾼次元 - より複雑なパターンの処理をおこなうため リザバーコンピューティングに求められる特性 25
まとめ • リザバーコンピューティングの概要 • エコーステートネットワークについて • リザバーコンピューティングの応⽤例について • サンプルプログラムを実⾏しての考察 まとめ
26
27 Thank you! We’re hiring!