31 Protip: validate the tflite model in python after conversion - 31 TensorFlow result TFLite result Compare results # Test the TensorFlow model on random Input data. tf_result = model(tf.constant(input_data)) # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="converted_model.tflite") interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test model on random input data. input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) # Compare the result. for tf_result, tflite_result in zip(tf_result, tflite_result): np.testing.assert_almost_equal(tf_result, tflite_result, decimal=5)