for Nearest Neighbor Search”, IEEE TPAMI 2011 ◼ [Guo+, ICML 2020] R. Guo+, “Accelerating Large-Scale Inference with Anisotropic Vector Quantization”, ICML 2020 ◼ [Malkov+, TPAMI 2019] Y. Malkov+, “Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small World Graphs,” IEEE TPAMI 2019 ◼ [Malkov+, IS 13] Y, Malkov+, “Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs”, Information Systems 2013 ◼ [Fu+, VLDB 19] C. Fu+, “Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graphs”, 2019 ◼ [Wang+, VLDB 21] M. Wang+, “A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search”, VLDB 2021 ◼ [Iwasaki+, arXiv 18] M. Iwasaki and D. Miyazaki, “Optimization if Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data”, arXiv 2018 ◼ [Ootomo+, arXiv 23] H. Ootomo+, “CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search for GPUs”, arXiv 2023 ◼ [Chum+, ICCV 07] O. Chum+, “Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval”, ICCV 2007 ◼ [Pinecone] https://www.pinecone.io/ ◼ [Milvus] https://milvus.io/ ◼ [Qdrant] https://qdrant.tech/ ◼ [Weaviate] https://weaviate.io/ ◼ [Vertex AI Matching Engine] https://cloud.google.com/vertex-ai/docs/matching-engine ◼ [Vald] https://vald.vdaas.org/ ◼ [Modal] https://modal.com/ Reference