Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マイクロサービスの概要と構築 統合編
Search
Shintaro Ikeda
May 26, 2017
Technology
0
85
マイクロサービスの概要と構築 統合編
Shintaro Ikeda
May 26, 2017
Tweet
Share
More Decks by Shintaro Ikeda
See All by Shintaro Ikeda
Difference between Swagger and OpenAPI
momotaro98
0
150
Haskell-Rinko-11
momotaro98
0
42
習慣的にやりたいことを手助けしてくれるLINEボットを作った話
momotaro98
0
61
AlertForViber_20171207
momotaro98
0
210
アウトプット駆動スキルアップ
momotaro98
1
72
Other Decks in Technology
See All in Technology
振り返りTransit Gateway ~VPCをいい感じでつなげるために~
masakiokuda
3
210
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
2.1k
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
1k
Amazon SNSサブスクリプションの誤解除を防ぐ
y_sakata
3
190
cdk initで生成されるあのファイル達は何なのか/cdk-init-generated-files
tomoki10
1
670
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.9k
AIエージェントが書くのなら直接CloudFormationを書かせればいいじゃないですか何故AWS CDKを使う必要があるのさ
watany
18
7.6k
組織内、組織間の資産保護に必要なアイデンティティ基盤と関連技術の最新動向
fujie
0
280
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
Deep Security Conference 2025:生成AI時代のセキュリティ監視 /dsc2025-genai-secmon
mizutani
4
2.9k
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
2
950
第64回コンピュータビジョン勉強会「The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition」
x_ttyszk
0
240
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
337
57k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
Facilitating Awesome Meetings
lara
54
6.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
The Pragmatic Product Professional
lauravandoore
35
6.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Gamification - CAS2011
davidbonilla
81
5.4k
Transcript
౷߹ฤ ୈճಉظ-5ձ 3BLVUFO *OD 4IJOUBSP*LFEB ϚΠΫϩαʔϏεͷ֓ཁͱߏங
ॻ੶ w ஶऀ4BN/FXNBO w 5IPVHIU8PSLT˞ͱ͍͏ձࣾ ͷ ͓ͦΒ͘ ͍ٕ͢͝ज़ऀ w 5XJUUFS!TBNOFXNBO
˞$*$%ɺςετࣗಈԽπʔϧΛ࡞͍ͬͯΔ ͔Β͋ΔγΧΰ͕ຊࣾͷฮιϑτΣΞձࣾ
ॻ੶ͷ࣍ w ষϚΠΫϩαʔϏεͷ֓ཁ w ষϚΠΫϩαʔϏεΞʔΩςΫνϟӡ ༻ʹ͓͚Δٕज़ऀͷࣄ w ষϚΠΫϩαʔϏεͷϞσϧԽํ๏ w ষϚΠΫϩαʔϏεؒͷ౷߹
w ষϞϊϦγοΫαʔϏεͷϚΠΫϩαʔ Ϗεͷղ w ষσϓϩΠ w ষςετ w ষࢹ w ষηΩϡϦςΟ w ষίϯΣΠͷ๏ଇͱγεςϜઃܭ w ষେنͳϚΠΫϩαʔϏε w ষ·ͱΊ ຊൃදͰऔΓ্͛Δ෦
ϚΠΫϩαʔϏεͱʁ
ϚΠΫϩαʔϏεͱ w ఆٛʮখ͔ͭͭ͘͞ͷׂʹઐ೦͢Δࣗͨ͠αʔϏεʯ w ڊେԽͨͭ͠ͷαʔϏε ϞϊϦγοΫαʔϏε ʹର߅ w 40" 4FSWJDF0SJFOUFE"SDIJUFDUVSF
ͷࢥΛ࣋ͭ w ࢄγεςϜʹΑΓ࣮ݱ͞ΕΔ w υϝΠϯۦಈઃܭɺܧଓతσϦόϦɺΦϯσϚϯυԾԽɺΠ ϯϑϥࣗಈԽɺখنࣗνʔϜɺͳͲͷߟ͔͑ΒӨڹ͞Εͨ
ϞϊϦγοΫαʔϏε ϚΠΫϩαʔϏε
ϚΠΫϩαʔϏεͷϝϦοτ αʔϏε͝ͱʹٕज़ΛબͰ͖Δ ো͕ىͬͯ͜࿈ͤͣΛͰ͖Δ αʔϏε͝ͱʹ߹ͬͨεέʔϦϯά͕Ͱ͖Δ αʔϏε͝ͱʹਝ͔ͭ༰қʹσϓϩΠ͕Ͱ͖Δ αʔϏενʔϜͱͯ͠৫໘ͰͷҰக͕Ͱ͖Δ ผΞϓϦέʔγϣϯͰ࠶ར༻͕Ͱ͖Δ ΑΓྑ͍࣮ʹஔ͖͑ΔίετΛখ͘͞Ͱ͖Δ Φʔόʔϔουͷൃੜ
ٕज़બͷࢄ ࣮ߦڥͷࢄ ࢄγεςϜಛ༗ͷͷൃੜ ωοτϫʔΫো ӡ༻ͷෳࡶԽ σϝϦοτ
5IFSFJTOPTJMWFSCVMMFU
ϚΠΫϩαʔϏεͷߏங౷߹ฤ ίϯγϡʔϚͷഁյతมߋΛճආ͢Δ "1*Λٕज़ඇґଘʹ͢Δ ίϯγϡʔϚʹͱͬͯ୯७ͳαʔϏεʹ͢Δ ౷߹ʹ͓͚Δࢦ ϚΠΫϩαʔϏεͷϞσϧԽͷຊ࣭
ʮૄ݁߹ੑʯ ʮߴڽूੑʯ ˞ॻ੶ͷୈষͰৄ͘͠આ໌͞Ε͍ͯΔ
ϚΠΫϩαʔϏεͷ౷߹ %#ڞ༗දతΞϯνύλʔϯ 3&45ϦΫΤετϨεϙϯεͷྑ͍ग़ൃ ΦʔέετϨʔγϣϯΑΓίϨΦάϥϑΟ ੑͷ͋Δ3FBEFSͰഁյతมߋΛආ͚Δ 6*ΛαʔϏεͷ߹ϨΠϠͱߟ͑Δ ͭͷτϐοΫ
%#ڞ༗දతΞϯνύλʔϯ %#υϥΠό %#υϥΠό %#υϥΠό 42-จ03. 42-จ03. 42-จ03. w %#Λߋ৽͢Δͱ͖ɺଞͷαʔϏεͷӨڹͷྀ͕ඞཁ
w %#ࣗମΛվม͢Δͱ͖ɺίϯγϡʔϚଆͷഁյతมߋଟେ w σʔλͰͳ͘ৼΔ͍ CFIBWJPS Λڞ༗͢Δ͖
3&45ϦΫΤετϨεϙϯεͷྑ͍ग़ൃ 3&45WT3$1 w 3$1ܾͯ͠ѱͰͳ͍͕ਖ਼͘͠3&45Λ͏ͷ͕ϕλʔ w )551ͱͷ૬ੑͷྑ͞ w )"5&0"4ͱ͍͏ૄ݁߹ࢧԉͷ ཁૉΛ࣋ͭ
w ΫϥΠΞϯτଆͰπϥΈ w ٕज़తґଘ͕ڧΊ w ϩʔΧϧίʔϧͱϦϞʔτίʔ ϧͰ༰ҟͳΔ w ΫϥΠΞϯτଆൺֱతָ
ΦʔέετϨʔγϣϯΑΓίϨΦάϥϑΟ w ϩδοΫ͕தԝαʔϏεʹूத w ҟৗΩϟον͍͢͠ w ඇಉظΠϕϯτΛ֤αʔϏε͕ ҙͷλΠϛϯάͰαϒεΫϥ Πϒ
w ࢹγεςϜΛՃͰߏங͢Δ ඞཁ༗Γ
ੑͷ͋Δ3FBEFSͰഁյతมߋΛආ͚Δ DVTUPNFS pSTUOBNF:PUBpSTUOBNF MBTUOBNF+BDLTPOMBTUOBNF FNBJMZPUB!FYBNQMFDPNFNBJM UFMFQIPOF/VNCFS UFMFQIPOF/VNCFS DVTUPNFS DVTUPNFS
OBNJOH pSTUOBNF:PUBpSTUOBNF MBTUOBNF+BDLTPOMBTUOBNF OJDLOBNF+PFOJDLOBNF OBNJOH FNBJMZPUB!FYBNQMFDPNFNBJM DVTUPNFS มߋ͕ ىͬͨ͜ w ʮFNBJMλάΛಡΈऔΔʯ3FBEFSͳΒίϯγϡʔϚଆมߋෆཁ
6*ΛαʔϏεͷ߹ϨΠϠͱߟ͑Δ ˡίϯϙʔωϯτ͕αʔϏεͷ"1* Λͨͨ͘Γํ ϓϥϯ" σόΠε͝ͱͷόοΫΤϯυ"1* ήʔτΣΠΛ༻ҙ͢ΔΓํ ϓ ϥϯ% ˠ
ײ w Ή͍ͣ w ൃ͕ΦϒδΣΫτࢦͷσβΠϯύλʔϯͱಉ༷ͩͱײͨ͡ w ૄ݁߹ੑ㱻ҕৡʹΑΔ؇͍݁߹ w ίϨΦάϥϑΟ㱻Φϒβʔόʔύλʔϯ w
ͳͲ