Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程回帰とベイズ最適化
Search
NearMeの技術発表資料です
PRO
November 15, 2024
Science
1
450
ガウス過程回帰とベイズ最適化
NearMeの技術発表資料です
PRO
November 15, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
50
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
66
Build an AI agent with Mastra
nearme_tech
PRO
0
69
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
36
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
81
AIエージェント for 予約フォーム
nearme_tech
PRO
2
150
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
55
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
28
Other Decks in Science
See All in Science
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
550
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
520
Hakonwa-Quaternion
hiranabe
1
110
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.2k
Machine Learning for Materials (Challenge)
aronwalsh
0
300
データマイニング - グラフデータと経路
trycycle
PRO
1
150
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
510
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
490
統計学入門講座 第4回スライド
techmathproject
0
150
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
180
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
GitHub's CSS Performance
jonrohan
1031
460k
4 Signs Your Business is Dying
shpigford
184
22k
The Invisible Side of Design
smashingmag
301
51k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Documentation Writing (for coders)
carmenintech
72
4.9k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
1 2024-11-15 第108回NearMe技術勉強会 Futo Ueno ガウス過程回帰とベイズ最適化
2 はじめに 参考図書:「ガウス過程と機械学習」 https://www.kspub.co.jp/book/detail/ 1529267.html
3 はじめに 図の出⼒などに使ったコード: https://colab.research.google.com/drive/1_1v2ZuANtvrgzOli6dnErZbms ASoU_rK?hl=ja#scrollTo=B4aPaxbC2Aoc
4 背景 ‧「ブラックボックス最適化⼿法」の⼀つであるベイズ最適化を タスクで使ったらかなり良かったので, 共有したい ‧ベイズ最適化のアルゴリズムではガウス過程回帰をうまく使っている ‧ガウス過程回帰⾃体もどこかに使えそう ‧ガウス過程回帰&ベイズ最適化の概要を説明する
5 回帰とは ⼊出⼒ペアのデータから未知の⼊出⼒関係を推測すること ex. 単回帰 cf. 過去の勉強会資料 https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono1-hui-gui-nig
uan-surufu-xi https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono2-xian-xing- hua-nitiao-zhan-siyou
6 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 → 実数が対応
7 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 多変量ガウス分布 → 実数が対応
→ 有限次元のベクトルが対応
8 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
9 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
10 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
11 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
12 切り取る 「無限次元」をどう扱うか ‧ガウス過程は”関数 version”の正規分布だった → 「関数 f がガウス過程に従う」ことをどう定義すればよいか? ‧多変量ガウス分布の⼀部を切り取ってもやはりガウス分布に従うことに注⽬
→ 任意の(いくらでも⼤きな)個数の成分をfから切り取っても多変量ガウス になるような「仕組み」があればよさそう m n - m m n - m m n - m 第1~第m成分を切り取る
13 ガウス過程の定義 定義 直感的には, ‧μ(x) → 無限次元の平均ベクトル ‧k(x, y) →
無限次元×無限次元の共分散⾏列
14 ガウス過程の定義 定義 ‧適切に前処理できるなら, 実際に回帰するときにμ(x)まで考慮しなくてもよい ‧k(x, y) はカーネル関数と呼ばれている
15 カーネル関数の与える影響 ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる 😁
😭 異なるk(x, y)に対する実現値の⽐較
16 カーネル関数の例 ‧ガウスカーネル ‧指数カーネル ‧線形カーネル なめらか ギザギザ ← この「中間」もある
(Matérn カーネル) ← 重回帰に対応
17 カーネル関数の与える影響 (再掲) ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる
😁 😭
18 ガウス過程回帰 ‧⼊出⼒のデータ: が与えられたとする (適切に前処理されているとする) ‧データにフィットする関数 f をexactに求めるのではなく, データ観測後の「事後的な f
の分布」を求める → ベイズ的 ↑よくわからないので とりあえずガウス過程でモデリング ⼊⼒ 出⼒ ↑データに適合するような関数が 出てくる確率が⾼くなっている(ことを期待) (未知)
19 ガウス過程回帰 ガウス過程の性質から であることはわかる → の分布もわかりそう ← ここでの出⼒について知りたいとする
20 条件付き多変量ガウス分布 定理
21 ガウス過程回帰
22 ガウス過程回帰 カーネル関数を変えると「パス(ガウス過程の実現値)の⾃由度」が変わる → 推定される「fの事後分布」も変わる γ (ハイパーパラメータ)の選び⽅にも依存す る
23 ガウス過程回帰の応⽤例① ‧時系列解析 ガウスカーネル ガウスカーネル + 線形カーネル → トレンドを考慮 カーネルの設定(
= 事前分布の設定) を通じて「主観」が反映される -- カーネル関数を組み合わせることで様々な予測が可能
24 ガウス過程回帰の応⽤例② ‧ベイズ最適化 -「ブラックボックス最適化⼿法」の⼀つ - ガウス過程回帰をうまく使うことで効率的に探索することができる ⼊⼒ 出⼒ ↑ f
の計算に時間がかかる場合, なるべく少ない評価回数で最適化したい
25 獲得関数 ‧f の計算が重いので, 代理となる関数(獲得関数)を⽤意する ‧獲得関数に求めること: - 計算が重くない (重要) -
f に近い (少なくとも既知の点とその近くで合っていてほしい) - 不確かさが反映されている(未探索の部分を過⼩評価しないでほしい) ‧ガウス過程回帰を使うと「関数 version」の信頼区間を出すことができる → 「上側100α%点を繋いだ関数」などが獲得関数として使われる -- 例えば, +2.576σ など (上側0.5%点)
26 ベイズ最適化のアルゴリズム
27 ベイズ最適化のアルゴリズム 今回は acquisition = +2.576σ としている ‧上げると反復が多くなるが局所解に陥りにくい ‧下げると反復が少なくて済むが局所解に陥りやすい
28 ベイズ最適化のアルゴリズム
29 ベイズ最適化のアルゴリズム
30 ベイズ最適化のアルゴリズム
31 ベイズ最適化のアルゴリズム
32 ベイズ最適化のアルゴリズム
33 ベイズ最適化のアルゴリズム
34 ベイズ最適化のアルゴリズム
35 ベイズ最適化のアルゴリズム
36 ベイズ最適化のアルゴリズム
37 ベイズ最適化のアルゴリズム
38 ベイズ最適化のアルゴリズム
39 ベイズ最適化のアルゴリズム 1. 初期値に対して f を評価 (重い) 2. 既知の {
(x, f(x)) } を使ってガウス過程回帰 3. ガウス過程回帰の結果から得られる獲得関数を最⼤化するx*を求める 4. x*においてfを評価 (重い) → (x*, f(x*))は既知となる 5. 2~4を繰り返して適当な停⽌条件を満たしたら終了
40 Reference ‧ 持橋⼤地, ⼤⽻成征 : 「ガウス過程と機械学習」. 講談社, 2019.
41 Thank you