Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程回帰とベイズ最適化
Search
NearMeの技術発表資料です
PRO
November 15, 2024
Science
1
450
ガウス過程回帰とベイズ最適化
NearMeの技術発表資料です
PRO
November 15, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
49
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
63
Build an AI agent with Mastra
nearme_tech
PRO
0
69
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
36
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
81
AIエージェント for 予約フォーム
nearme_tech
PRO
2
150
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
55
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
28
Other Decks in Science
See All in Science
Symfony Console Facelift
chalasr
2
460
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
710
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
130
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
930
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
520
機械学習 - pandas入門
trycycle
PRO
0
280
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
390
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
260
データベース01: データベースを使わない世界
trycycle
PRO
1
660
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
120
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
940
データベース02: データベースの概念
trycycle
PRO
2
760
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Unsuck your backbone
ammeep
671
58k
Designing Experiences People Love
moore
142
24k
How to train your dragon (web standard)
notwaldorf
95
6.1k
Thoughts on Productivity
jonyablonski
69
4.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
820
Automating Front-end Workflow
addyosmani
1370
200k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Transcript
1 2024-11-15 第108回NearMe技術勉強会 Futo Ueno ガウス過程回帰とベイズ最適化
2 はじめに 参考図書:「ガウス過程と機械学習」 https://www.kspub.co.jp/book/detail/ 1529267.html
3 はじめに 図の出⼒などに使ったコード: https://colab.research.google.com/drive/1_1v2ZuANtvrgzOli6dnErZbms ASoU_rK?hl=ja#scrollTo=B4aPaxbC2Aoc
4 背景 ‧「ブラックボックス最適化⼿法」の⼀つであるベイズ最適化を タスクで使ったらかなり良かったので, 共有したい ‧ベイズ最適化のアルゴリズムではガウス過程回帰をうまく使っている ‧ガウス過程回帰⾃体もどこかに使えそう ‧ガウス過程回帰&ベイズ最適化の概要を説明する
5 回帰とは ⼊出⼒ペアのデータから未知の⼊出⼒関係を推測すること ex. 単回帰 cf. 過去の勉強会資料 https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono1-hui-gui-nig
uan-surufu-xi https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono2-xian-xing- hua-nitiao-zhan-siyou
6 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 → 実数が対応
7 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 多変量ガウス分布 → 実数が対応
→ 有限次元のベクトルが対応
8 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
9 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
10 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
11 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
12 切り取る 「無限次元」をどう扱うか ‧ガウス過程は”関数 version”の正規分布だった → 「関数 f がガウス過程に従う」ことをどう定義すればよいか? ‧多変量ガウス分布の⼀部を切り取ってもやはりガウス分布に従うことに注⽬
→ 任意の(いくらでも⼤きな)個数の成分をfから切り取っても多変量ガウス になるような「仕組み」があればよさそう m n - m m n - m m n - m 第1~第m成分を切り取る
13 ガウス過程の定義 定義 直感的には, ‧μ(x) → 無限次元の平均ベクトル ‧k(x, y) →
無限次元×無限次元の共分散⾏列
14 ガウス過程の定義 定義 ‧適切に前処理できるなら, 実際に回帰するときにμ(x)まで考慮しなくてもよい ‧k(x, y) はカーネル関数と呼ばれている
15 カーネル関数の与える影響 ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる 😁
😭 異なるk(x, y)に対する実現値の⽐較
16 カーネル関数の例 ‧ガウスカーネル ‧指数カーネル ‧線形カーネル なめらか ギザギザ ← この「中間」もある
(Matérn カーネル) ← 重回帰に対応
17 カーネル関数の与える影響 (再掲) ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる
😁 😭
18 ガウス過程回帰 ‧⼊出⼒のデータ: が与えられたとする (適切に前処理されているとする) ‧データにフィットする関数 f をexactに求めるのではなく, データ観測後の「事後的な f
の分布」を求める → ベイズ的 ↑よくわからないので とりあえずガウス過程でモデリング ⼊⼒ 出⼒ ↑データに適合するような関数が 出てくる確率が⾼くなっている(ことを期待) (未知)
19 ガウス過程回帰 ガウス過程の性質から であることはわかる → の分布もわかりそう ← ここでの出⼒について知りたいとする
20 条件付き多変量ガウス分布 定理
21 ガウス過程回帰
22 ガウス過程回帰 カーネル関数を変えると「パス(ガウス過程の実現値)の⾃由度」が変わる → 推定される「fの事後分布」も変わる γ (ハイパーパラメータ)の選び⽅にも依存す る
23 ガウス過程回帰の応⽤例① ‧時系列解析 ガウスカーネル ガウスカーネル + 線形カーネル → トレンドを考慮 カーネルの設定(
= 事前分布の設定) を通じて「主観」が反映される -- カーネル関数を組み合わせることで様々な予測が可能
24 ガウス過程回帰の応⽤例② ‧ベイズ最適化 -「ブラックボックス最適化⼿法」の⼀つ - ガウス過程回帰をうまく使うことで効率的に探索することができる ⼊⼒ 出⼒ ↑ f
の計算に時間がかかる場合, なるべく少ない評価回数で最適化したい
25 獲得関数 ‧f の計算が重いので, 代理となる関数(獲得関数)を⽤意する ‧獲得関数に求めること: - 計算が重くない (重要) -
f に近い (少なくとも既知の点とその近くで合っていてほしい) - 不確かさが反映されている(未探索の部分を過⼩評価しないでほしい) ‧ガウス過程回帰を使うと「関数 version」の信頼区間を出すことができる → 「上側100α%点を繋いだ関数」などが獲得関数として使われる -- 例えば, +2.576σ など (上側0.5%点)
26 ベイズ最適化のアルゴリズム
27 ベイズ最適化のアルゴリズム 今回は acquisition = +2.576σ としている ‧上げると反復が多くなるが局所解に陥りにくい ‧下げると反復が少なくて済むが局所解に陥りやすい
28 ベイズ最適化のアルゴリズム
29 ベイズ最適化のアルゴリズム
30 ベイズ最適化のアルゴリズム
31 ベイズ最適化のアルゴリズム
32 ベイズ最適化のアルゴリズム
33 ベイズ最適化のアルゴリズム
34 ベイズ最適化のアルゴリズム
35 ベイズ最適化のアルゴリズム
36 ベイズ最適化のアルゴリズム
37 ベイズ最適化のアルゴリズム
38 ベイズ最適化のアルゴリズム
39 ベイズ最適化のアルゴリズム 1. 初期値に対して f を評価 (重い) 2. 既知の {
(x, f(x)) } を使ってガウス過程回帰 3. ガウス過程回帰の結果から得られる獲得関数を最⼤化するx*を求める 4. x*においてfを評価 (重い) → (x*, f(x*))は既知となる 5. 2~4を繰り返して適当な停⽌条件を満たしたら終了
40 Reference ‧ 持橋⼤地, ⼤⽻成征 : 「ガウス過程と機械学習」. 講談社, 2019.
41 Thank you