Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新入社員目線から学ぶエンジニアに必要なこと その2:新しいサービスを作る (必要性の理解:形...
Search
NearMeの技術発表資料です
PRO
August 16, 2023
Science
0
120
新入社員目線から学ぶエンジニアに必要なこと その2:新しいサービスを作る (必要性の理解:形態素解析+文章のベクトル化)
本当その開発が必要かどうかは、需要によっても決まります。ですので、あらかた需要があるかを確認できる可能性のあるものとして、今回は形態素解析、そして単語のベクトル化について扱います。
NearMeの技術発表資料です
PRO
August 16, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
第121回NearMe技術勉強会.pdf
nearme_tech
PRO
0
3
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
1
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
38
AIエージェント for 予約フォーム
nearme_tech
PRO
2
98
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
30
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
14
GitHub Custom Actionのレシピ
nearme_tech
PRO
0
8
RustでDeepQNetworkを実装する
nearme_tech
PRO
1
12
より良い解に辿り着くカギ-近傍設定の重要性
nearme_tech
PRO
0
79
Other Decks in Science
See All in Science
Symfony Console Facelift
chalasr
2
430
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
130
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.6k
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
1
1.1k
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
630
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
110
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
170
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
110
統計学入門講座 第4回スライド
techmathproject
0
110
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
320
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
820
機械学習 - pandas入門
trycycle
PRO
0
170
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Making Projects Easy
brettharned
116
6.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Site-Speed That Sticks
csswizardry
6
530
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Unsuck your backbone
ammeep
671
57k
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.7k
Facilitating Awesome Meetings
lara
54
6.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
550
Transcript
0 新入社員目線から学ぶエンジニアに必要なこと その2:新しいサービスを作る (必要性の理解:形態素解析+文章のベクトル化) 2023-08-04 第55回NearMe技術勉強会 Asahi Kaito
1 まずは前回のJamの確認から
2 弊社でのJam(1)
3 弊社でのJam(2)
4 弊社でのJam(2) これに着目してみたい
5 どんなタスクか? 想定)元々大きなアプリがあり、そのFeatureタスク • 親 → フードデリバリーアプリ(ここは前提とする) • 子 →
まかない提供機能 *考慮する事項として考えられるもの 1. そもそも、その機能の必要性は? 2. UIのどの部分に取り入れるか? 3. 料金体系はどうするのか? …などなど
6 どんなタスクか? 想定)元々大きなアプリがあり、そのFeatureタスク • 親 → フードデリバリーアプリ(ここは前提とする) • 子 →
まかない提供機能 *考慮する事項として考えられるもの 1. そもそも、その機能の必要性は? 2. UIのどの部分に取り入れるか? 3. 料金体系はどうするのか? …などなど ここを扱います
7 どんなタスクか? *考慮する事項として考えられるもの 1. そもそも、その機能の必要性は? • どのように必要性を取得するか ◦ ユーザーからのFB →
フォームなどから ◦ SNSでのエゴサーチ → 形態素解析+文章のベクトル化で分析を行うことなど ◦ Google Mapなどでの評価 → 自分の会社の口コミチェックなど *形態素解析 → ある文章を分かち書きにして、品詞ごとに分解するもの *文章のベクトル化 → 文章を形態素に分解してベクトルとすることで、内積や距離の定義ができるので単語間の関係性を定量 的に計算することができる
8 とにかく実践だ!
9 形態素解析+文章のベクトル化 理論)どのようにして文章を解析するのか? 1. 文章のベクトル化 a. 文章を形態素という要素に分解して、ベクトル化する 俺
10 形態素解析+文章のベクトル化 理論)どのようにして文章を解析するのか? 1. 文章のベクトル化 a. 文章を形態素という要素に分解して、ベクトル化する b. あるターゲット文章とベクトルとして比較する(cos類似度など)
11 形態素解析+文章のベクトル化 理論)どのようにして文章を解析するのか? 1. 文章のベクトル化 a. 文章を形態素という要素に分解して、ベクトル化する b. あるターゲット文章とベクトルとして比較する(cos類似度でまずは簡単に処理) c.
類似度の高いものを集め(ベクトル化の利点)、 そこからデータをフィルタリングする(形態素解析の利点) [ ‘まじでこのアプリ最高。感動した。’, ‘まかないの機能とかあると良いな。’, ‘aaaaaaaaaaaaa’, ]
12 形態素解析+文章のベクトル化 理論)どのようにして文章を解析するのか? 2. 文章の分析方法 • Pythonを用いて実装 • 以下のモジュールを用いる ◦
Janome(形態素解析のメインモジュール) ◦ Word2Vec(分散表現でベクトル化する機械学習モデル) ※Colabへのリンク :https://colab.research.google.com/drive/1GsAIOmJzTsIU-56gCbg63juo5M738QI9?usp=sharing
13 形態素解析+文章のベクトル化 より実践)Twitter(X) APIを用いて、形態素解析+ベクトル化を実施してみよう • https://developer.twitter.com/ja/docs/twitter-api(X開発者プラットフォーム)
14 WordCloudで単語の頻度を可視化 実践)単語の頻度を可視化する方法 • WordCloudを用いて実装 ◦ 以下のモジュールを用いる ◦ WordCloud(単語の頻度を画像で可視化) ※Colabへのリンク(先ほどと同じ)
:https://colab.research.google.com/drive/1GsAIOmJzTsIU-56gCbg63juo5M738QI9?usp=sharing https://self-development.info/wp-content/uploads/2021/01/my.png
15 次回こそ 要件定義の作成 (どのように要件定義を書くか?)
16 参考リンク • 形態素解析 ◦ Janomeを使ってPythonで形態素解析 :https://qiita.com/charon/items/661d9a25b2233a9f8da4 • ベクトル化(ここでは分散表現) ◦
Efficient Estimation of Word Representations in Vector Space(単語の分散表現の論文) :https://arxiv.org/abs/1301.3781 ◦ Word2vecによる分散表現を可視化:https://qiita.com/g75hca/items/507a557f10d6133a699a ◦ Word2Vecを理解する:https://qiita.com/g-k/items/69afa87c73654af49d36 ◦ 感情分析でニュース記事のネガポジ度合いをスコア化する :https://qiita.com/g-k/items/e49f68d7e2fed6e300ea • WordCloud ◦ Pythonを使ってWordCloud(ワードクラウド)を作成する:リンク
17 Thank you