Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元尺度法MDS
Search
Ringa_hyj
January 07, 2021
Science
0
290
多次元尺度法MDS
Ringa_hyj
January 07, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
100
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
64
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
81
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
75
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
840
因子分析(仮)
ringa_hyj
0
150
階層、非階層クラスタリング
ringa_hyj
0
120
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
440
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
430
Other Decks in Science
See All in Science
IWASAKI Hideo
genomethica
0
130
サイゼミ用因果推論
lw
1
7.4k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
120
データベース08: 実体関連モデルとは?
trycycle
PRO
0
920
Accelerated Computing for Climate forecast
inureyes
PRO
0
110
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
高校生就活へのDA導入の提案
shunyanoda
0
3.9k
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
950
データベース01: データベースを使わない世界
trycycle
PRO
1
750
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.9k
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
620
Featured
See All Featured
KATA
mclloyd
32
14k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
4 Signs Your Business is Dying
shpigford
184
22k
Code Reviewing Like a Champion
maltzj
524
40k
BBQ
matthewcrist
89
9.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
A Tale of Four Properties
chriscoyier
160
23k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Facilitating Awesome Meetings
lara
54
6.5k
Transcript
多次元尺度法 MDS : multi dimensional scaling 特性値ではなく、 個体間の類似性を表現するようなデータに対して行う分析 多次元の類似性を持つデータを低次元に落とすなどがMDS 類似性といっても、必ず距離データでなくともいい場合(非計量多次元尺度
non metric MDS) 距離データである場合 metric MDS (計量多次元尺度、古典的多次元尺度)
mtric MDS データ点ごとの差の二乗の平方根を考える = − = 1 − 1 2
+ ・・・ 変換後のベクトルから、以下のような式が成り立つyの存在する空間を探す − = = = − ここで、距離の公理を満たすことを前提とする δ=0 δ>=0 δij=δji ※公理を満たすデータは「メトリックである」と呼ばれる D=[δij]
単に二乗を考えてみる ⅈ 2 = − 2 = − − =
2 + 2 − 2 ⊤ 後項の内積部分を考えると、iとjの積の総和となる = 1 1 + 22 + ⋯ = 2 + 2 − 2 よって 変形して = ½ ( 2 + 2 − ⅈ 2 ) これは個体間の距離を求めるということは、内積を求めることに等しいということを表現している 内積から別座標yへの変換を考えるのが古典的手法であると先ほど説明した。
あ
個体ijの原点は、n個の重心であるとする 新しい座標ベクトル y は ⅈ 2 = − 2 =
− − よって d^2 ij = -2aij = yi T yi + yj T yj – 2yi T yj =bii + bjj -2bij =aii + ajj – 2aij (距離の公理より) =-2aij
bij = aij – mean(ai+) - mean(a+j) + mean(a++) bij
= (yi – y_bar)T(yj-y_bar) B = [bij] このとき、Bは固有値がすべて非負の半正定値行列であることがわかる B=ΓΛΓ ^T = (ΓΛ^1/2)(ΓΛ^1/2) = YY^T ΛはBの固有値を対角として持つ行列である Λ = diag(λ1…λp) Γは固有ベクトルを列変形したもの Γi = λi ^(-1/2) xi
より詳細な計算方法 データDからA=[-1/2 dij^2]を計算 bij = aij – mean(ai+)… から B=[bij]を求める
Bのうち、正の固有値 λ だけを削減次元 k個求める(寄与率を計算する場合にはすべて求める) 固有ベクトル Y = (y1~yk)を求める λi = yi T yi となるように固有ベクトルの「長さ」を調整する 個体 pi の座標が yi1 ….yip へと変換される
2 4 5 2 3 6 4 3 7 5
6 7 行平均 mean(ai+) 列平均 mean(a+i)
2次元に落とすならば固有値λから2つの固有値を選び出す。同時に固有ベクトルも2つ得られるはず。 固有ベクトルは長さ1に正規化されて出力されるものなので、 固有値の大きさに調整する yk T yk = λk より、 yi
= y’i √λi を計算する 二次元のデータをplotにつかう。 つまり、 調整した一つ目の固有ベクトルをx座標 調整した二つ目の固有ベクトルをy座標 とする
あ
心理学のような、非類似度データに対する分析 stress(目的関数) を最小にするような個体の配置を求める = ⅆ − መ 2 ⅈ 2
1 2 ※Σはj<iの時のみ実行される ※j<I ということは、下側三角行列のすべての和になる ※d_hat は dijと近くなるような座標値から定められる値 ※分子は最小二乗法に等しい Sが0になればよい推定量で、大きい(0.2)以上だと失敗とされている
あ