Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DVCによるデータバージョン管理
Search
Ringa_hyj
December 31, 2024
Technology
0
160
DVCによるデータバージョン管理
Ringa_hyj
December 31, 2024
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
75
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
120
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
130
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
850
多次元尺度法MDS
ringa_hyj
0
310
因子分析(仮)
ringa_hyj
0
160
階層、非階層クラスタリング
ringa_hyj
0
130
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
440
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
440
Other Decks in Technology
See All in Technology
20251027_findyさん_音声エージェントLT
almondo_event
2
530
戦えるAIエージェントの作り方
iwiwi
20
9.7k
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
240
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
650
制約下の医療LLM Observability 〜セキュアなデータ活用と専門家による改善サイクルの実現〜
kakehashi
PRO
1
100
組織全員で向き合うAI Readyなデータ利活用
gappy50
5
2k
CloudComposerによる大規模ETL 「制御と実行の分離」の実践
leveragestech
0
110
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
1
1.2k
Databricks Free Edition で始めるMLflow
taka_aki
0
700
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
420
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.6k
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Embracing the Ebb and Flow
colly
88
4.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Navigating Team Friction
lara
190
15k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Making Projects Easy
brettharned
120
6.4k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Transcript
DVCの目的は・・・ 機械学習プロジェクトの再現可能性(reproducible)の確保 こんな経験はありませんか? • 過去に自分 or 他人が取り組んだ機械学習プロジェクトを再実行することになった • 実行したがナゼか当時の報告書の結果と一致しない ※原因はデータ・コード・パラメタに変更が発生したが、変更が残っていない等
紹介 1/5 はじめに
紹介 2/5 現状 • コードはgitで管理できるが、大規模なデータセットはgitでは管理が難しい(容量の制限) ➢ コードはgitで管理、データセットはローカルorクラウドストレージに保存 • データとコードの対応をバージョン管理する難しさ(ドキュメント作成の難しさ) ➢
どのコードでどのデータを使用したか、記録はドキュメント作成者の努力に依存する • チーム間でのデータ共有の難しさ(統一された保存先がない) ➢ データの保存場所だけでなく、実行フォルダへの配置方法などをドキュメントや口頭 で詳細に説明する • コード・パラメタ・データを変更した場合の性能比較が困難(結果ファイルの管理が大変) ➢ 変更の履歴、結果の比較をドキュメントとして保存 ➢ 結果ファイルをストレージへ保存 ➢ 手順に従ったとき、結果が一致するか目視でチェック 上記のようにコードとデータとそのバージョン管理にミスが発生す る状況ではプロジェクトの再現性が低下してしまいます 現状の解決策
DVCはGitと連携して動作する(特にデータ管理の)補完的なツールと してプロジェクトの実験再現性を確保するように設計されています 解決策 • 大きなデータファイルはGitの外で管理 • データやコード、モデルの重みなどに発生した差異をmd5ハッシュを使い検知 • dvc.yamlや.dvcなどのメタファイルのみをGitで追跡 •
Gitライクなコマンドでデータのバージョンを管理(add, checkout, pushなど) • 実データはキャッシュやストレージ(AWS S3, Google Cloud Storage, Azure Blob)に保 存 • データ処理から学習、評価までのパイプラインを定義可能 • コード・パラメタ・データの組み合わせごとの評価指標をコミット履歴やブランチをつか い比較することが可能 紹介 3/5 DVCによる解決策
git hub DVC remote storage git ローカルリポジトリ DVC cache ソースコード
DVCメタファイル ソースコード DVCメタファイル 実データ (データセット、モデル) 実データ (md5ハッシュによる重複削除) リモート環境 ローカル環境 git push git pull dvc push dvc pull dvc add dvc commit dvc checkout 紹介 4/5 DVCのデータ管理イメージ
前処理 pre.py 特徴量作成 feat.py 学習 train.py 評価 eval.py 実行パイプライン dvc.yaml
パラメタ params.yaml pre.py feat.py train.py eval.py 中間生成物 (特徴量、モデル) 実験結果 (metrics.json、plot.png) 紹介 5/5 • 依存ファイルの変化をmd5ハッシュで検知 • dvc reproコマンドでパイプラインに定義したスクリプトを順番に実行 • 結果の生成、比較を半自動化 パイプラインによる実行過程の再現