Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
階層、非階層クラスタリング
Search
Ringa_hyj
January 06, 2021
Science
0
92
階層、非階層クラスタリング
Ringa_hyj
January 06, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
14
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
15
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
19
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
14
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
800
多次元尺度法MDS
ringa_hyj
0
260
因子分析(仮)
ringa_hyj
0
120
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
400
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
380
Other Decks in Science
See All in Science
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
140
ウェーブレットおきもち講座
aikiriao
1
810
ベイズ最適化をゼロから
brainpadpr
2
970
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.4k
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
260
Spectral Sparsification of Hypergraphs
tasusu
0
210
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
570
位相的データ解析とその応用例
brainpadpr
1
820
機械学習を支える連続最適化
nearme_tech
PRO
1
210
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
1
110
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
210
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
170
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
How to train your dragon (web standard)
notwaldorf
89
5.8k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Embracing the Ebb and Flow
colly
84
4.5k
The Cult of Friendly URLs
andyhume
78
6.1k
Optimising Largest Contentful Paint
csswizardry
33
3k
Optimizing for Happiness
mojombo
376
70k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
Making Projects Easy
brettharned
116
6k
Site-Speed That Sticks
csswizardry
3
270
Transcript
クラスター分析、クラスタリング、数値分類(toxonomy) 外的基準の無い状態でデータを集合にする手法 n個体をk群に分ける組み合わせの「総数」は 「第二スターリング数」で計算できる ※二項係数とよく似ているため、nCkになぞらえてnSkとあらわされる。 ※パスカルの三角形とも似ているが、単純に数列として求まるものではない。 , = 1 !
=0 −1 1 −
階層的手法 距離、類似度といった評価値から、近いものを順にまとめていく 凝集型階層的分類法とよばれたりする あと分枝型とか。 例:最近傍,最遠法、重心法、メディアン、加重平均、可変法、ウォード法 重心法: データ点ごとのユークリッド距離を計算 一番近い二点の重心(平均)をもとめ、二点を一点に置き換える。 これを繰り返す。 どのデータを結合したとき、重心がいくつであったか?を樹状にplotする←デンドログラム
樹状のなかでどの枝で切るか(クラスタをいくつにするか)を決める ※ユークリッドの他にメディアンなどを使ってもいいが、その場合「距離の逆転」が起こる
非階層的手法 階層以外の手法たち 例:k平均、ファジィc平均,ISODATA法 など 確率分布をクラスタと考えるので、混合分布ガウスモデルもこちらの分類 ヒストグラムで2分割: テストの点数を上位と下位に分けるとする。 まず並べる ヒストグラムを書いて谷で縦に切り2クラスに分ける (群間分散と郡内分散の比の最大化を目指す
群内/群間 の比が最大になるときが、最も谷が深い地点) k平均: データに適当にクラスを割り振る クラス内の平均を計算し、これに近いものを順にラベルつけなおしする また平均、収束するまで繰り返し ※初期値に依存、外れ値に弱い、シングルトン(ひとつだけのクラス)ができる
混合正規分布モデル いくつかの正規分布が背景に存在すると考え、 データから最尤法によってどの正規分布に属しているかを分ける EM法によって求めるが、長くなるので別記する(つもり) クラス数(いくつの正規分布が潜んでいるか)はクラスタリングあるあるだが、 AICによって決めたり、経験だったり
クラスタリングでの距離の公理 dij が0以上である dii=0 同じ点の距離は0 dij=dji 距離は方向で変化しない dij <= dik
+ djk 三角不等式が成り立つ ここまでを「計量的な距離」の公理 dij <= max(dik,djk) 超距離不等式が成り立つ これを加えると「超計量な距離」の公理 別称:ウルトラメトリック これを満たさないものを 非計量的な距離 とよぶ
距離の測り方 絶対距離、チェビシェフ、ユークリッド、平均ユークリッド、ミンコフスキー 類似度の測り方 相関係数、余弦係数 質的データは距離は考えられない。 対応分析の数量化得点を使って無理やり数値にしてから扱う場合は時々ある
あ