Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
tidymodels紹介「モデリング過程料理で表現できる説」
Search
Ringa_hyj
December 05, 2020
Technology
0
420
tidymodels紹介「モデリング過程料理で表現できる説」
JapanR 20201205 一般LT
R
tidymodels
Ringa_hyj
December 05, 2020
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
50
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
35
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
43
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
31
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
820
多次元尺度法MDS
ringa_hyj
0
270
因子分析(仮)
ringa_hyj
0
140
階層、非階層クラスタリング
ringa_hyj
0
110
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
400
Other Decks in Technology
See All in Technology
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
440
“パスワードレス認証への道" ユーザー認証の変遷とパスキーの関係
ritou
1
600
React ABC Questions
hirotomoyamada
0
490
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
750
JPOUG Tech Talk #12 UNDO Tablespace Reintroduction
nori_shinoda
2
150
Classmethod AI Talks(CATs) #21 司会進行スライド(2025.04.17) / classmethod-ai-talks-aka-cats_moderator-slides_vol21_2025-04-17
shinyaa31
0
600
「経験の点」の位置を意識したキャリア形成 / Career development with an awareness of the “point of experience” position
pauli
4
100
AWSで作るセキュアな認証基盤with OAuth mTLS / Secure Authentication Infrastructure with OAuth mTLS on AWS
kaminashi
0
180
AI AgentOps LT大会(2025/04/16) Algomatic伊藤発表資料
kosukeito
0
140
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
150
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
930
サーバレス、コンテナ、データベース特化型機能をご紹介。CloudWatch をもっと使いこなそう!
o11yfes2023
0
180
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
4 Signs Your Business is Dying
shpigford
183
22k
A better future with KSS
kneath
239
17k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
Adopting Sorbet at Scale
ufuk
76
9.3k
Optimizing for Happiness
mojombo
377
70k
Automating Front-end Workflow
addyosmani
1369
200k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
A Tale of Four Properties
chriscoyier
158
23k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
japan.R 2020/12/5
@Ringa_hyj @Ringa_hyj Name <- ‘@Ringa_hyj’ 自 己 紹 介 スライドの
間違い・指摘 歓迎致します
https://www.slideshare.net/YutakaKuroki/tokyo-r-20181110 https://speakerdeck.com/dropout009/tokyo-dot-r83 Rコミュニティを通して知ったtidymodelsの存在 https://speakerdeck.com/dropout009/tidymodelsniyorutidynaji-jie-xue-xi https://speakerdeck.com/s_uryu/tidymodels
知らないパッケージを知る機会 やっぱRコミュニティええなぁ… 受け取ったからには 何かお返ししたい!! 今日やること
tidymodelsの紹介 検 証 対 象 今日やること
を 今日やること
料理に例えるので親しんでもらいたい 今日やること install.packages(‘tidymodels’) library(tidymodels) いれてみて!!
飛行機の遅延予測
食材 の準備 = 欠損値 messy データ準備・前処理 library(nycflights13) #まず確認 library(skimr) skim(flights)
library(tidyverse) glimpse(flights) #余分なゴミを落とす flight_data <- flights %>% mutate( arr_delay = ifelse(arr_delay >= 30, "late", "on_time"), arr_delay = factor(arr_delay), date = as.Date(time_hour) ) %>% inner_join(weather, by = c("origin", "time_hour")) %>% select(dep_time, flight, origin, dest, air_time, distance, carrier, date, arr_delay, time_hour) %>% na.omit() %>% mutate_if(is.character, as.factor)
食材 の準備 = データ準備・前処理
食材 の確認 = #食材の状態や揃っているかを確認 p <- ggplot(flight_data, aes(x = carrier,fill=arr_delay))
+ geom_bar(stat = "count",position = "stack") + stat_count(aes(label = ..count..), geom = "text", vjust = 2, colour = "red") library(plotly) ggplotly(p) EDAで確認 EDA
食材 の確認 = EDA
味見・評価 する人 = train,test,valid #試食者にだけウケる味でなく #色々な人に良い評価をもらうため set.seed(123) data_split <- initial_split(flight_data,
prop = 0.7) train_data <- training(data_split) test_data <- testing(data_split) train test valid 感想:内輪ウケ 世間的な評価 口コミ 感想:一般ウケ
調理手順 の設定 = モデル学習用の前処理 #どんな手順で調理するのが効率的か #料理直前の下ごしらえ #trainとtestの人で提供する食材の部分が変化しないか flights_rec <- recipe(arr_delay
~ ., data = train_data) %>% update_role(flight, time_hour, new_role = "ID") %>% step_date(date, features = c("dow", "month")) %>% step_holiday(date, holidays = timeDate::listHolidays("US")) %>% step_rm(date) %>% step_dummy(all_nominal(), -all_outcomes()) %>% step_zv(all_predictors()) #step_smote()今回不均衡だが不使用 ← themisにも対応 #recipeをかけた後がどうなるか #調理前にデータを味見する #prep, bake, juice flights_rec%>% prep() %>% juice() flights_rec %>% prep() %>% bake(test_data)
調理手順 の設定 = モデル学習用の前処理 従来まで ・testにないカテゴリをone hotしないように! ・ID列を予測に使ってないよな? ・どの列box-coxしたっけ? ・日付から月,日,曜日の特徴量合成したっけ?
・正規化終わってたっけ? ・予測対象がleakしてないよな? ・あ、testにも同じパラメタで処理しなきゃいけないんだった… juice(), bake() レシピを展開
調理器具 の設定 = モデル決め #調理前の下ごしらえも終わった #調理器具によってはマッチしない下ごしらえもある #フライパンか鍋か、IHかガスか lr_mod <- logistic_reg()
%>% set_engine("glm")
調理器具 の設定 = モデル決め モデル式の記述の違い(ベクトル,マトリックス,列名) lm glmnet lr_mod <- logistic_reg()
%>% set_engine("lm") lr_mod <- logistic_reg() %>% set_engine("glm")
調理器具 の設定 = モデル決め 内部パラメタの名前の違い(おなじチューニングパラメタなのに…) ranger randomForest ranger randomForest parsnip
抽出サイズ mtry mtry → mtry 木の数 num.trees ntree → trees 分割サイズ min.node.size nodesize → min_n
調理場 手順と器具を持って へ = 学習・推論 #調理場へ持っていく flights_wflow <- workflow() %>%
add_model(lr_mod) %>% add_recipe(flights_rec) #いざ調理 flights_fit <- flights_wflow %>% fit(data = train_data) #完成 predict(flights_fit, test_data) predict(flights_fit, test_data, type = "prob")
調理場 手順と器具を持って へ = 学習・推論 従来のsummary() oh, messy…
調理場 手順と器具を持って へ = 学習・推論 tidy() is tidy !
調理場 手順と器具を持って へ = 学習・推論 bootstrapして fitして 結果をnest & tidyにして
回帰係数のサンプリング分布から 最善モデルの選択
料理人 から話を聞く= レシピ,データ逆引き #さっき調理fitした結果 #flights_fit <- # flights_wflow %>% #
fit(data = train_data) #食材教えてぇな flights_fit %>% pull_workflow_mold() #レシピ教えてぇな flights_fit %>% pull_workflow_prepped_recipe() %>% broom::tidy() flights_fit %>% pull_workflow_preprocessor() %>% broom::tidy()
#評価結果は? flights_pred <- predict(flights_fit, test_data, type = "prob") %>% bind_cols(test_data
%>% select(arr_delay,time_hour,flight)) flights_pred %>% roc_curve(truth = arr_delay, .pred_late) %>% autoplot() 世間的な評価 口コミ 評価 を調べる= 評価指標の確認
評価 を調べる= 評価指標の確認 Tidymodelsのpredict思想 ・ 入 力 デ ー タ
と 同 じ だ け の p r e d を ( 行 数 一 致 、 b i n d _ c o l で き る ) ・ I D 列 を 常 に 隣 に 保 持 で き る よ う に ・ 列 名 は 「 . p r e d 」 で 被 り な く
Enjoy !
reference https://www.tidymodels.org/ https://rstudio-conf-2020.github.io/applied-ml/Part_3.html#1 https://unsplash.com/ https://www.tidyverse.org/blog/2020/02/themis-0-1-0/