Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スタートアップにおける、チーム拡大を見据えたコンポーネント分割の取り組み
Search
Ryunosuke Iwai
November 21, 2023
Technology
3
3.6k
スタートアップにおける、チーム拡大を見据えたコンポーネント分割の取り組み
@技術的負債に向き合うOnline Conference
https://findy.connpass.com/event/297813/
Ryunosuke Iwai
November 21, 2023
Tweet
Share
More Decks by Ryunosuke Iwai
See All by Ryunosuke Iwai
A2Aのクライアントを自作する
rynsuke
1
240
2024/08/19 PEK Recap | データで振り返るPEK2024
rynsuke
2
260
バッチ処理のSLOをどう設計するか
rynsuke
10
1.7k
Error Tracking for Logsを用いたバッチ処理のエラー監視
rynsuke
3
1.7k
Notionではじめるライフハックのススメ
rynsuke
24
1.6k
「Datadog入れてみたらAWSの料金が爆発した話」@ゆるSRE勉強会 #1
rynsuke
12
11k
LLM Meetup Tokyo #2 手続きを記憶するコマンド型エージェントの実装
rynsuke
3
3.2k
Other Decks in Technology
See All in Technology
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
230
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
0
150
TableauLangchainとは何か?
cielo1985
1
140
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
260
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
1
1.1k
第64回コンピュータビジョン勉強会「The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition」
x_ttyszk
0
130
ソフトウェアテストのAI活用_ver1.25
fumisuke
1
510
Lakebaseを使ったAIエージェントを実装してみる
kameitomohiro
0
170
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
120
Operating Operator
shhnjk
1
640
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
250
CDK Toolkit Libraryにおけるテストの考え方
smt7174
1
360
Featured
See All Featured
Side Projects
sachag
455
42k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Designing for humans not robots
tammielis
253
25k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
It's Worth the Effort
3n
185
28k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Writing Fast Ruby
sferik
628
62k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Bash Introduction
62gerente
613
210k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Transcript
スタートアップにおける、チーム拡⼤を⾒ 据えたコンポーネント分割の取り組み @技術的負債に向き合うOnline Conference Cloudbase 株式会社 岩井⿓之介 / @ryuke
株式会社メルカリ Microservices Platform CI/CD @ryuke 岩井 ⿓之介 Cloudbase株式会社 Scanner &
Platform チーム Go / terraform / Datadog 前職 現在 SNS https://twitter.com/i_ryuke
None
https://cloudbase.ink/
システム構成
組織‧プロダクトの成⻑に伴って⽣じてきた課題 • チーム(エンジニア+デザイナー+PdM)が9⼈になり、1チームでコミュニ ケーションを取るのが徐々に難しくなってきた • 要求されるドメイン知識や関⼼事が、コンポーネントごとに⼤きく異な り、メンバーの認知負荷が⾼い
組織‧プロダクトの成⻑に伴って⽣じてきた課題 • チーム(エンジニア+デザイナー+PdM)が9⼈になり、1チームでコミュニ ケーションを取るのが徐々に難しくなってきた • 要求されるドメイン知識や関⼼事が、コンポーネントごとに⼤きく異な り、メンバーの認知負荷が⾼い → チーム分割へ
Team Topologies • コンウェイの法則 = ソフトウェアアーキテク チャと組織構造の間には「同型⼒」が働く • ソフトウェアの⾃然な境界 =
節理⾯ でチームを分割する マシュー・スケルトン (著), マニュエル・パイス (著), 原田 騎郎 (翻訳), 永 瀬 美穂 (翻訳), 吉羽 龍太郎 (翻訳)『チームトポロジー 価値あるソフト ウェアをすばやく届ける適応型組織設計』日本能率協会マネジメントセン ター, 2021
システムの要素を整理する お客様のクラウド環境から取得 した構成情報を元にセキュリ ティリスクを分析し、データ ベースに保存した結果をSaaS上 で表⽰する
システムの要素を整理する お客様のクラウド環境から取得 した構成情報を元にセキュリ ティリスクを分析し、データ ベースに保存した結果をSaaS上 で表⽰する
システムの要素を整理する 取得 分析 保存 表示 インフラ Step Functions Step Functions
Step Functions ECS Service + Vercel 言語 Go Go NodeJS NodeJS ドメイン クラウド セキュリティ SaaS SaaS 関心事 データの正確性 データの正確性 データの正確性 顧客体験 変更のケイデン ス 低速 (機能開発的) 低速 (機能開発的) 低速 (機能開発的) 高速 (仮説検証的)
システムの要素を整理する 取得 分析 保存 表示 インフラ Step Functions Step Functions
Step Functions ECS Service + Vercel 言語 Go Go NodeJS NodeJS ドメイン クラウド セキュリティ SaaS SaaS 関心事 データの正確性 データの正確性 データの正確性 顧客体験 変更のケイデン ス 低速 (機能開発的) 低速 (機能開発的) 低速 (機能開発的) 高速 (仮説検証的)
システムの要素を整理する 取得 分析 保存 表示 インフラ Step Functions Step Functions
Step Functions ECS Service + Vercel 言語 Go Go NodeJS NodeJS ドメイン クラウド セキュリティ SaaS SaaS 関心事 データの正確性 データの正確性 データの正確性 顧客体験 変更のケイデン ス 低速 (機能開発的) 低速 (機能開発的) 低速 (機能開発的) 高速 (仮説検証的) Scanner Application
得られた結果 • 結果として、お客様との接点でプロダクトを磨き込むStream-Aligned的なチー ム(Application)と、⼟台となるデータ基盤を提供し前線のチームの認知負荷 を取り除くPlatform的なチーム(Scanner)に分離 😄 チームサイズが下がったことでチーム内のコミュニケーションも密に 😄 ドメインが分割されたことで各チームの認知負荷も下がった 😄
前線のチームがより⾼速に仮説検証を回せるようになった
Fin.
本当にこれでよかったのか...?
よく⾒ると...? 取得 分析 保存 表示 インフラ Step Functions Step Functions
Step Functions ECS Service + Vercel 言語 Go Go NodeJS NodeJS ドメイン クラウド セキュリティ SaaS SaaS 関心事 データの正確性 データの正確性 データの正確性 顧客体験 変更のケイデン ス 低速 (機能開発的) 低速 (機能開発的) 低速 (機能開発的) 高速 (仮説検証的) Scanner Application
よく⾒ると...? 取得 分析 保存 表示 インフラ Step Functions Step Functions
Step Functions ECS Service + Vercel 言語 Go Go NodeJS NodeJS ドメイン クラウド セキュリティ SaaS SaaS 関心事 データの正確性 データの正確性 データの正確性 / 顧客体験 顧客体験 変更のケイデン ス 低速 (機能開発的) 低速 (機能開発的) 低速 (機能開発的) 高速 (仮説検証的) Scanner Application
境界の曖昧なコンポーネントが発⽣していた
境界の曖昧なコンポーネントが発⽣していた Application Scanner
曖昧なチーム境界が引き起こす課題 • Loaderに両チームの様々なロジックが混在 ◦ S3からのデータの取得、前回スキャン結果との差分の計算、DBへの永続化、差 分の通知、... ◦ 徐々に「誰も怖くて触れない」コンポーネントに • Scannerの最終成果物が、RDSに保存されている
◦ DBの共通所有によるチーム間コミュニケーションコスト、所有権の曖昧さ ◦ Scannerのテストスコープが肥⼤化
曖昧なチーム境界が引き起こす課題 • Loaderに両チームの様々なロジックが混在 ◦ S3からのデータの取得、前回スキャン結果との差分の計算、DBへの永続化、差 分の通知、... ◦ 徐々に「誰も怖くて触れない」コンポーネントに • Scannerの最終成果物が、RDSに保存されている
◦ DBの共通所有によるチーム間コミュニケーションコスト、所有権の曖昧さ ◦ Scannerのテストスコープが肥⼤化 → Loaderを分割することで、RDSよりも良い境界を⾒つけられないか?
モノリスからマイクロサービスへ • データとロジックのオーナーシップを揃える ことで、何を共有して何を隠すかを決められ るようにする • サービスの分割は段階的に⾏う (モジュラーモノリス) Sam Newman
(著), 島田 浩二 (翻訳)『モノリスからマイクロサービスへ ―モノリ スを進化させる実践移行ガイド』オライリージャパン , 2020
Loaderを分割していく
1. コンポーネントの構造は維持したまま、中の実装だけを分割 interface = 契約
2. データとロジックの境界を揃える interface = 契約
3. 将来的には、コンポーネントとして分割していく interface = 契約
得られた結果 • 現在はまだ「1. 中の実装だけを分割」の状態 😄 ロジックのオーナーシップが整理された 😄 DBより⼿前の段階でデータを検証できるようになった 😄 インターフェースを切ったことで、期待される出⼒が明確になった
• 「切り込み」に留めておくことで、変化に柔軟に対応できる形に ◦ インターフェースを調整しながら固めていける、⼿戻りしやすい ◦ データの不整合といった難しい問題に対処せずに済む
Key Messages:チーム分割において気をつけるべきポイント • チームとシステムの境界のずれに、技術的負債が発⽣することがある 所有権の曖昧なロジックが詰め込まれ、メンテ性が低下しやすい • ソフトウェアの⾃然な境界 = 節理⾯でチーム‧システムを分割する ⼀度決めたら終わりではなく、常により良い節理⾯を模索していく
• 「システムの切り込み」から始める 変化に対応しつつ、少しずつインターフェースを固めていく
ク ラ ウ ド 運 ⽤ を 安 全 に