Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CompML : Elementary knowledge for 'Parameter-Fr...
Search
sarrrrry
January 15, 2021
Technology
1
120
CompML : Elementary knowledge for 'Parameter-Free Online Optimization'
sarrrrry
January 15, 2021
Tweet
Share
More Decks by sarrrrry
See All by sarrrrry
点過程の基礎とその周辺
sarrrrry
0
170
みずほ銀行の2021年大規模システム障害に関する考察
sarrrrry
1
140
CompML:PaperReading-PHM-No.1
sarrrrry
0
170
PaperReading-ExplainingKnowledgeDistillationByQuantifyingTheKnowledge
sarrrrry
0
35
Other Decks in Technology
See All in Technology
Formal Development of Operating Systems in Rust
riru
1
420
あなたの知らないクラフトビールの世界
miura55
0
140
Reactフレームワークプロダクトを モバイルアプリにして、もっと便利に。 ユーザに価値を届けよう。/React Framework with Capacitor
rdlabo
0
130
色々なAWSサービス名の由来を調べてみた
iriikeita
0
110
JuliaTokaiとJuliaLangJaの紹介 for NGK2025S
antimon2
1
130
.NET 最新アップデート ~ AI とクラウド時代のアプリモダナイゼーション
chack411
0
200
Docker Desktop で Docker を始めよう
zembutsu
PRO
0
180
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
140
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.6k
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
210
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
2.2k
Azureの開発で辛いところ
re3turn
0
240
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Code Reviewing Like a Champion
maltzj
521
39k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Typedesign – Prime Four
hannesfritz
40
2.5k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Transcript
None
None
【目的】 典型的な確率的最適化手法 など で必要とされる、 やその他のパラメータの調整を不必要にする事。 【 】 • • •
• •
エキスパート統合問題 問題設定 • 東京ドームで行われたあるクイズ大会に参加 • 制限時間内に答えだと思った方向に移動する ◯ 外野側、✕ 内野側 •
◯✕クイズが 問出題され、成績上位者が2次予選に進める 問題が分からなくても優勝経験のある 人を発見して、同じ動きをすれば良い ◦ 正解率が高いはずの優勝経験のある人をエキスパートと呼ぶ事にする ◦ 人のエキスパートと問題出題者をまとめて環境と呼ぶ事にする 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 環境がプレイヤーのアルゴリズム を知った上で、予測 ・ となるクイズを出題する ような、最悪の場合の解析を行う手法 この手法から を求める事が多い? 畑埜晃平,
& 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 • 素朴な戦略 の真似をする
◦ ミスの回数 たかだか 回 • 分法 の多数決に従う ◦ ミスの回数 たかだか • 乱択 分法 から 様ランダムに 人選び、その決定に従う ◦ ミスの回数 たかだか 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在しない場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社. アルゴリズム の 誤り回数の期待値 エキスパートの 誤り回数の最小値
エキスパート統合問題 乱択2分法 再掲 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 別の問題設定 オンライン配分問題 複数の投資先の銘柄 あるいはアルゴリズムやサーバ等選択肢 が与えられたとき、 持っている資源をうまく配分する事で損失を最小化する問題を考える 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 エキスパートの予測集合の扱い • エキスパート統合問題 ◦ 乱択2分法の変更 重み付き平均アルゴリズム ▪ 単純な問題として定式化 •
どんなエキスパート統合問題 も確率ベクトル集合を予測集合とし、各エキスパート は常 に単位ベクトルを予測するものに限定した問題に還元できる 標準化 • 標準化したオンライン配分問題に対する を ヘッジアルゴリズム と呼ぶ • エキスパートの予測を単位ベクトルではなく、一般化して凸集合であるとした枠組み をオンライン凸最適化 と呼ぶ
エキスパート統合問題 エキスパート統合問題 標準形 ↪ 一般化 オンライン凸最適化問題 予測値集合 凸集合 ↪ 特殊ケース
オンライン線形最適化問題
論文 • ◦ ◦ 基準 をベースにした 推定量を用いて、 なオンライン最適化 手法の提案 他の論文解説はこちら
https://github.com/CompML/survey-stochastic-optimization/issues