Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CompML : Elementary knowledge for 'Parameter-Fr...
Search
sarrrrry
January 15, 2021
Technology
1
120
CompML : Elementary knowledge for 'Parameter-Free Online Optimization'
sarrrrry
January 15, 2021
Tweet
Share
More Decks by sarrrrry
See All by sarrrrry
点過程の基礎とその周辺
sarrrrry
0
230
みずほ銀行の2021年大規模システム障害に関する考察
sarrrrry
1
160
CompML:PaperReading-PHM-No.1
sarrrrry
0
190
PaperReading-ExplainingKnowledgeDistillationByQuantifyingTheKnowledge
sarrrrry
0
42
Other Decks in Technology
See All in Technology
一番人に近いコードレビューア CodeRabbit
kinopeee
0
110
「全社導入」は結果。1人の熱狂が組織に伝播したmikanのn8n活用
sota_mikami
0
480
ドキュメントからはじめる未来のソフトウェア
pkshadeck
3
1k
AWS監視を「もっと楽する」ために
uechishingo
0
390
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
220
The Engineer with a Three-Year Cycle - 2
e99h2121
0
190
BPaaSオペレーション・kubell社内 n8n活用による効率化検証事例紹介
kubell_hr
0
260
Hardware/Software Co-design: Motivations and reflections with respect to security
bcantrill
1
260
【northernforce#54】SalesforceにおけるAgentforceの位置づけ・事例紹介
yutosatou_kit
0
120
AIとともに歩む情報セキュリティ / Information Security with AI
kanny
4
1.7k
AWS Amplify Conference 2026 - 仕様からリリースまで一気通貫生成 AI 時代のフルスタック開発
inariku
3
380
新規事業 toitta におけるAI 機能評価の話 / AI Feature Evaluation in toitta
pokutuna
0
270
Featured
See All Featured
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
130
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
190
A Tale of Four Properties
chriscoyier
162
24k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
120
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
270
It's Worth the Effort
3n
188
29k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
250
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
42
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Transcript
None
None
【目的】 典型的な確率的最適化手法 など で必要とされる、 やその他のパラメータの調整を不必要にする事。 【 】 • • •
• •
エキスパート統合問題 問題設定 • 東京ドームで行われたあるクイズ大会に参加 • 制限時間内に答えだと思った方向に移動する ◯ 外野側、✕ 内野側 •
◯✕クイズが 問出題され、成績上位者が2次予選に進める 問題が分からなくても優勝経験のある 人を発見して、同じ動きをすれば良い ◦ 正解率が高いはずの優勝経験のある人をエキスパートと呼ぶ事にする ◦ 人のエキスパートと問題出題者をまとめて環境と呼ぶ事にする 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 環境がプレイヤーのアルゴリズム を知った上で、予測 ・ となるクイズを出題する ような、最悪の場合の解析を行う手法 この手法から を求める事が多い? 畑埜晃平,
& 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 • 素朴な戦略 の真似をする
◦ ミスの回数 たかだか 回 • 分法 の多数決に従う ◦ ミスの回数 たかだか • 乱択 分法 から 様ランダムに 人選び、その決定に従う ◦ ミスの回数 たかだか 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在しない場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社. アルゴリズム の 誤り回数の期待値 エキスパートの 誤り回数の最小値
エキスパート統合問題 乱択2分法 再掲 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 別の問題設定 オンライン配分問題 複数の投資先の銘柄 あるいはアルゴリズムやサーバ等選択肢 が与えられたとき、 持っている資源をうまく配分する事で損失を最小化する問題を考える 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 エキスパートの予測集合の扱い • エキスパート統合問題 ◦ 乱択2分法の変更 重み付き平均アルゴリズム ▪ 単純な問題として定式化 •
どんなエキスパート統合問題 も確率ベクトル集合を予測集合とし、各エキスパート は常 に単位ベクトルを予測するものに限定した問題に還元できる 標準化 • 標準化したオンライン配分問題に対する を ヘッジアルゴリズム と呼ぶ • エキスパートの予測を単位ベクトルではなく、一般化して凸集合であるとした枠組み をオンライン凸最適化 と呼ぶ
エキスパート統合問題 エキスパート統合問題 標準形 ↪ 一般化 オンライン凸最適化問題 予測値集合 凸集合 ↪ 特殊ケース
オンライン線形最適化問題
論文 • ◦ ◦ 基準 をベースにした 推定量を用いて、 なオンライン最適化 手法の提案 他の論文解説はこちら
https://github.com/CompML/survey-stochastic-optimization/issues