Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
現場の開発者でもできるユーザー中心かつ 仮説検証型の企画アプローチ
Search
shida
June 21, 2014
Research
0
2.8k
現場の開発者でもできるユーザー中心かつ 仮説検証型の企画アプローチ
HDIfes第3回「面白いことに育てるために『考える』」での発表資料です。
shida
June 21, 2014
Tweet
Share
More Decks by shida
See All by shida
受託開発で ビジネスづくりを楽しむ
shida
0
2.4k
受託アジャイルでの契約書作り請求や、外注パートナーへの支払いスキームまで
shida
0
890
スクレイピングの安定運用のために苦労したところ、工夫したところ
shida
4
2k
DevLOVEリンスタカフェ vol.7
shida
1
150
DevLOVE リンスタカフェ vol2 成長を促すKPIが見つからん
shida
0
87
ユーザーが「それいいね!」と言うまで
shida
0
3.1k
ハイブリッドアプリの 受け入れテスト自動化
shida
0
200
SkypインタビューとKA法による分析
shida
4
950
CucumberによるHTML5アプリの 受け入れテスト自動化
shida
1
430
Other Decks in Research
See All in Research
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
380
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
170
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
350
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
140
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
220
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
480
Cross-Media Information Spaces and Architectures
signer
PRO
0
220
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
1.9k
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
630
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1k
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
440
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
190
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
42
2.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
25
2.8k
Six Lessons from altMBA
skipperchong
28
3.8k
Visualization
eitanlees
146
16k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
Scaling GitHub
holman
459
140k
Gamification - CAS2011
davidbonilla
81
5.3k
Transcript
ʮݱͷ։ൃऀͰͰ͖ΔϢʔβʔத৺͔ͭ ԾઆݕূܕͷاըΞϓϩʔνʯ 2014.06.21 גࣜձࣾϏʔɾΞδϟΠϧ ࢤా ༟थ
ࣗݾհ ࢤా ༟थ PG (2002)→ SE (2004)→ CTO(2006)→ಠཱ (ג)ϏʔɾΞδϟΠϧ(2012) ελʔτΞοϓࢧԉ
WebαʔϏεɺεϚϗΞϓϦͷ։ൃ(Rails, RubyMotion) ΞδϟΠϧ։ൃɺϦʔϯɾελʔτΞοϓͷ׆༻ @shida(twitter), shida1977(Facebook)
ࠓͷ༰ ։ൃऀ(։ൃձࣾ)اըʹͬͱ͔͔ΘΒͳ͍ͱ μϝͳͷͰ? ͦ͏ͳΔͨΊʹࢲ͕औΓΜͰ͍ΔࣄɺͳͲ
ͱ͋Δ৽نࣄۀͷࣦഊࣄྫ ͦͷϓϩδΣΫτ2͍ؒͭͮͨ 4िؒ1εϓϦϯτͰ࣮֬ʹσϦόϦʔ͠ଓ͚ͨ มԽΛ๊༴͚ͭͮͨ͠ ސ٬୲ऀຬ͍ͯͯ͠৴པ͕ؔߏஙͰ͖͍ͯͨ Ͱɺऩӹ্͕Βͳͯ͘ɺΉ͠ΖͲΜͲΜམ͍ͪͯͨ ͍ͭʹ։ൃ༧ࢉਚ͖ͨ ࣾ୲ऀʹݴͬͨ
ೋͱ͋ͷձࣾʹ ࣄΛ;Δͳ
ͳʹ͕ѱ͔ͬͨͷ͔? ཁٻΛͯ͑ͨ͢ͷʹ
࡞Δࣄ͕ తʹͳͬͯ·ͨ͠ɻ Ͱ
ݴΘΕͨ௨Γ࡞ͬͯ Ϗδωε͕͏·͘ ߦ͘ͱݶΒͳ͍
Ϗδωε͕ޭ͠ͳ͚Εɺ ୭ϋοϐʔ͡Όͳ͍
ϕϯνϟʔϒʔϜ࠶ͼ − NHKχϡʔε ͓Α͏ຊ ຊ֨తىۀϒʔϜ౸དྷͷஹ͠ʙएऀͷແ͞ͱϓϩܦӦऀͷίϥϘΛ ࢧԉ͢Δڥ͏ − Ϗδωεδϟʔφϧ ϕϯνϟʔϒʔϜ࠶དྷɺࠓ࣌ͷϕϯνϟʔىۀՈͷಛͱʁʂ −
MRI Online ࠓͷىۀՈ͕ͨͪ͜͜ҧ͏ ϕϯνϟʔϒʔϜ࠶དྷ − WEDGE Infinity ຊʹελʔτΞοϓϒʔϜ͕͖ͬͯͨ − ౦༸ܦࡁΦϯϥΠϯ ͱ͜ΖͰɺɺɺ ۙͷελʔτΞοϓϒʔϜ
ग़య: Running Lean ৽نࣄۀͷ9ׂࣦഊ͢Δ
ग़య: Running Lean ޭͨ͠ελʔτΞοϓͷ2/3 ॳͷϓϥϯΛ్தͰ େ෯ʹมߋ͍ͯ͠Δ
มԽΛ๊༴ͤΑ ༷มߋى͜Δͷ͕͋ͨΓ·͑ͳࣄͱͯ͠ॲཧͰ͖ΔΑ͏උ͑Δ มԽΛىͤ͜! มԽΛى͜͢͜ͱ͕ඞཁͰ͢ɻͨͩɺରԠ͢ΔͷͰ͋Γ·ͤΜɻ มԽΛ୯ʹͭΜ͡Όͳͯ͘ɺࣗΒมԽΛى͜͢ͷͩɻ ग़య: http://qiita.com/TsuyoshiUshio@github/items/28f4c127c911170cad49#3-23 ελʔτΞοϓϓϩάϥϚͷҝͷ ৽ΞδϟΠϧϚχϡϑΣετ by
Kent Beck
͜͏͍ͬͨϜʔϒϝϯτͷ ݩʹͳ͍ͬͯΔͷ͕ ϦʔϯɾελʔτΞοϓ
܁Γฦ͠ܕͷΞϓϩʔν Ϣʔβʔத৺ܕΞϓϩʔν ԾઆݕূܕͷՊֶతΞϓϩʔν ϦϯελͷΤοηϯε(ࢲͷղऍ)
ϦϯελͷΤοηϯεᶃ ܁Γฦ͠ܕͷΞϓϩʔν σϦόϦΛग़དྷΔ͚ͩසൟʹ ૣظʹϦεΫͳࣦഊͰֶͿ
ϦϯελͷΤοηϯεᶄ Ϣʔβʔத৺ܕΞϓϩʔν ϓϩμΫτΦʔφʔ(Business): ʮAͷΞΠσΟΞઈରߦ͚Δɻ ΦϨ͕ݴ͏௨Γ࡞ͬͯ͘ΕΕ ͍͍!ʯ UXσβΠφ(UX): ʮϢʔβʔBͷ՝Λղܾ͠ ͕͍ͨͬͯ·͢ʯ ٕज़ऀ(Tech):
ʮ͜ͷBͷ՝Xͷٕज़Λ ͑ղܾग़དྷΔ͔Ͱ͢Ͷʯ 3ͭͷࢹͷόϥϯε͕औΕͨ ιϑτΣΞΛࢦ͢ ΠϯλϏϡʔɺߦಈ؍ɺΞϯέ ʔτɺΞΫηεղੳΛۦ͠ɺ Ϣʔβʔͷ࣮ଶ͔ΒΞϓϩʔν
ϦϯελͷΤοηϯεᶅ ԾઆݕূܕͷՊֶతΞϓϩʔν ΞΠσΟΞԾઆ ূ͞ΕΔՄೳੑ͋Γɺجຊٙͬ ͔͔ͯΔ Ծઆͷਖ਼͠͞Λཱূ͢Δํ๏Λܾ Ίɺߏங͠ ࣮ݧͯ͠ଌఆ͠ ੳͯ͠Ծઆ͕ਖ਼͍͔͠ݕূ͢Δ ϏδωεΞΠσΟΞιϦϡʔγϣ
ϯͷͬͱجૅతͳ෦͔Βɺ ਖ਼͠͞ͷΤϏσϯεΛੵΈ্͛Δ
ϦϯελͷΤοηϯεᶅ ԾઆݕূܕͷՊֶతΞϓϩʔν Ծઆ͕ূ͞ΕͨΒاըΛมߋ (=ϐϘοτ) ৽͍͠ԾઆΛཱͯͯ࠶ͼνϟϨ ϯδ ϐϘοτΛ܁Γฦͯ͠ɺاը͕ ऩଋͯ͠ߦ͘Πϝʔδ
ϦʔϯɾελʔτΞοϓత ΞϓϩʔνͰϏδωεͷ ޭ͕͕֬͋ΔΜͰ? (গͳ͘ͱݴΘΕͨͷΛͦͷ··࡞Γ͚ͭͮΔΑΓ)
ՊֶతΞϓϩʔν͔ͩΒ ϓϩηεΛϚελʔ͢Ε ։ൃऀͰऔΓΊΔ (ܦݧηϯε͕ͳͯ͘)
ΞδϟΠϧ։ൃ(Τοηϯεᶃ) ٕज़ऀࢹͰͷΞΠσΟΞఏڙɺ࣮ݱՄೳੑͷ୲อ(Τοηϯε ᶄTechύʔτ) UXσβΠϯͷϓϩηεΛཧղ͠ɺ࣮ࢪͷͨΊͷࢧԉ(ΤοηϯεᶄUX ύʔτ) Ծઆݕূ࣮ࢪͷࢧԉ(Τοηϯεᶅ) ελʔτΞοϓ(৽نࣄۀ)ͷதͰ ։ൃऀ͕୲ͬͯߦׂ͖͘(ఏҊ)
ΦϨͷاըʹؒҧ͍ͳ͍ɺݴͬͨ௨Γ࡞ͬͱ͚ Ծઆݕূͯ͠Δ࣌ؒۚͳ͍ɺ։ൃʹઐ೦͠Ζ Ϧϯελಋೖʹ͋Γ͕ͪͳোน
ϏδϣϯΛ৴͡Δ ΞΠσΟΞͰউෛ͢Δ σʔλΛࣔ͢ ͱ͜ͱΜ͠߹͏ ࣙΊΔͬͯݴ͏ Ϧϯελಋೖʹ͋ͨΓ͋Γ͕ͪͳোนᶃ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦ
اըͷࠜຊͱͳΔ෦=Ϗδϣϯɻ͜͏͢ΕṶ͔Δɻੈͷத͕มΘΔɻ Ϗδϣϯͬͱॏཁ ͦͷࣗ৴ɺ͕ɺώτɾΧωɾϞϊͷݯ νʔϜҰؙͱͳͬͯͦΕΛ৴͡Δ ʮ͋ͳͨͷϏδϣϯʹಉҙ͍ͯ͠·͢ʯ ϏδϣϯΛ؏͖ͭͭɺUXɺTechΛຬͨ͢ಓΛࡧ͢Δɺͱઆ໌ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦᶃ ϏδϣϯΛ৴͡Δ
ϓϩμΫτΦʔφʔʮ͓͒!ʯͱೲಘ͢ΔΑ͏ͳΞΠσΟΞΛग़͢ ͦͷͨΊʹҰ୴ඇެೝͰUXσβΠϯΛ࣮ࢪ͢Δ ΞΠσΟΞ͕Α͚Ε࠾༻͞ΕΔ͠ɺͦΕΛಋ͍ͨUXɾԾઆݕূ͋ ΔఔೝΊΒΕΔ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦᶄ ΞΠσΟΞͰউෛ͢Δ
ϢʔβʔςετΛඇެೝͰ࣮ࢪͯ͠ɺૢ࡞͍ͯ͠Δө૾ΛݟͤΔ ΞΫηεղੳΛߦ͍ੳ݁ՌΛݟͤΔ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦᶅ σʔλΛࣔ͢
ϝϦοτɾσϝϦοτΛཧ͢Δ ઌߦࣄྫɺޭࣄྫΛࣔ͢ ಋೖϦεΫͷ͞Ͱઆಘ͢Δ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦᶆ ͱ͜ͱΜ͢
·ͭͱ ʮ͓લ͕Ͳ͏ࢥͬͯΑ͏͕ؔͳ͍ɺԶͷݴͬͨ࡞Εʯ͍ͬͯ͏ͷϦεϖΫτ͞Εͳ͍Θ͚Ͱ͢ΑͶɻ ࣭ ϦεϖΫτ͞Ε͍ͯͳ͍ঢ়ଶͷਓୡ͍Δͱࢥ͍·͕͢ɺͦ͏͍͏ਓͲ͏ͨ͠Βྑ͍Ͱ͔͢Ͷʁ ·ͭͱ ΊΔɻ ͘͢͝զຫ͢Δਓ͕ଟͯ͘ɺܠؾ͕͘͢͝ѱ͍ͷଓ͍͍ͯͯɺ͜͜ʹ͍ͳ͍ͱχʔτʹͳͬͯ͠·͏͔͠Εͳ͍͍ͬͯ͏ڪාײ͋Δͱ ࢥ͏Μ͚ͩͲɺͦͷϦεϖΫτ͠ͳ͍ਓʹରͯ͠ไͪ͠Ό͏ͱɺͲΜͲΜཱ͕Լ͕͍ͬͯ͘ɻ ࠷ऴతʹౕྴʹͳͬͪΌ͏ɻITౕྴʹɻ ͦΕμϝͩͱࢥ͏ͷͰɺͲ͏͢Δ͔͍ͬͯ͏ͱɺੲ͔Βͦ͏͍͏࣌ཚΛى͜͢ɻͦ͏͍͏ΤϯδχΞΛϦεϖΫτ͠ͳ͍࿈தݟࣺͯΔͬ
͍ͯ͏ɻ Ͳ͏ͤΤϯδχΞ͕͍ͳ͚ΓΌγεςϜ࡞Εͳ͍Μ͔ͩΒɻ ΦϨͷاըʹؒҧ͍ͳ͍ͷରࡦᶇ ࣙΊΔͬͯݴ͏ ग़య: ʮITౕྴԽʹضΛͦ͏ʯ VASILYٕज़ސ ·ͭͱΏ͖ͻΖࢯΠϯλϏϡʔ http://tech.vasily.jp/2014/06/vasily_matz/
࣌ؒɺίετͰԾઆݕূ͢Δ͜ͱ ίʔυΛॻ͔ͣʹݕূ͢Δ खൈ͖ίʔυ(ϓϩτλΠϓ)Ͱݕূ͢Δ ொதͰΛ͔͚ͯΠϯλϏϡʔ͢Δ GoogleϋϯάΞτͰΠϯλϏϡʔɺϢʔβʔ ςετ͢Δ UXੳࢧԉπʔϧΛ࡞Δ ʮԾઆݕূͯ͠Δ࣌ؒۚͳ͍ʯ ͷରࡦ
ϫΠϠϑϨʔϜ ϖʔύʔϓϩτλΠϓ Ұຕֆ ΠϝʔδϜʔϏʔ ϥϯσΟϯάϖʔδ ΠϯλϏϡʔ ʮԾઆݕূͯ͠Δ࣌ؒۚͳ͍ʯ ͷରࡦᶃ ίʔυΛॻ͔ͣʹݕূ͢Δ
ϓϩμΫτίʔυʹࠐ·ͳ͍ ը໘্ͷҰ෦ɺҰຕֆɺͳͲͰ͝·͔͢ ෦͚ͩͰςετͯ͠அ͢Δ(Ұൠެ։͠ͳ͍) ಈ͔ͳ͍ॴςετ࣌ʹิઆ໌͢Δ ςετΛॻ͔ͳ͍ ʮԾઆݕূͯ͠Δ࣌ؒۚͳ͍ʯ ͷରࡦᶄ खൈ͖ίʔυ(ϓϩτλΠϓ)Ͱݕূ
࣌ؒతʹ༨༟͕͋Δঢ়ଶͷਓʹΛ͔͚Δ(ެԂ Ͱͭ͘Ζ͍ͰΔਓͱ͔) ΞʔϦʔΞμϓλʔͦ͏ͳਓʹΛ͔͚Δɻ ʮ(͋ͳ๊͕͍ͨ͑ͯΔ)ͷ࣮ଶௐࠪͰ͢ʯ ϝϞாΛͬͯௐࠪһͬΆ͘͢Δɻ 1ͰͳͲͱ͔͚ͯ͠ɺͳ่͠͠ͰԆ͢ɻ ʮԾઆݕূͯ͠Δ࣌ؒۚͳ͍ʯ ͷରࡦᶅ ொதͰΛ͔͚ͯΠϯλϏϡʔ͢Δ
100ԁγϣοϓͰॻըελϯυ(?)ࣗ࡞ Pocket WifiͱiPodTouchΛ༣ૹ iPod TouchͰϢʔβʔͷखݩΛதܧ GoogleϋϯάΞτͰΠϯλϏϡʔɺϢʔβʔ ςετ͢Δ
σϞ ʮԾઆݕূͯ͠Δ࣌ؒۚͳ͍ʯ ͷରࡦᶇ UXੳࢧԉπʔϧΛ࡞Δ
৽نࣄۀ/ελʔτΞοϓݴΘΕͨͷΛͦͷ··࡞ͬͯ9ׂࣦ ഊ͢Δ Ϗδωε͕ޭ͠ͳ͚Εɺ୭ͤʹͳΕͳ͍ ։ൃऀϦϯελͰɺاըʹߩݙ͠ɺޭΛ͛͠Α͏ ϦϯελಋೖٴͼɺίετԽͷϊϋҰ෦Λհ ·ͱΊ
ʮϦϯελCafe(Ծ)ʯͱ͍͏ษڧձΛاըத ࣮ࡍʹϦϯελΛͬͯΈ͍ͯΔਓϝΠϯର ࣮ࡍͬͯΈͯɺ͔ͬͨ͠ࣄɺ͔Βͳ͔ͬͨࣄɺࣦഊͨ͠ࣄɺ ͯ͠Έͨࣄɺ͔ͬͨࣄɺ͏·͍ͬͨ͘͜ͱɺͦ͏͍͏ͷΛ ʮ͓ޓ͍ʹʯใަ͢Δ ͱͬͯ؇͍ʹ͍ͨ͠ͱࢥͬͯ·͢ ڵຯ͋Δํɺੋඇ͔͚ͯԼ͍͞! ࠷ޙʹࠂᶃ − ϦϯελCafe(Ծ)
−
UXੳࢧԉγεςϜɺڵຯ͋Δํɺ͓͕͚Լ͍͞ɻ ΑΖ͚͠ΕɺΞΧϯτൃߦɺOEMఏڙͳͲக͠·͢ɻ ࠷ޙʹࠂᶄ − UXੳࢧԉγεςϜ −