Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
2.8k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
仮説検定とP値
shuntaros
8
9k
Target trial emulationの概要
shuntaros
2
2.5k
Win ratio その2
shuntaros
0
420
Win ratioとは何か?
shuntaros
0
2.3k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
820
「回帰分析から分かること」と「変数選択」
shuntaros
14
17k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.3k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.3k
何が知りたいのか?〜どのぐらい?に答える〜(医学統計学・疫学セミナー)
shuntaros
0
2.3k
Other Decks in Science
See All in Science
Sociovirology
uni_of_nomi
0
100
(2024) Livres, Femmes et Math
mansuy
0
110
ベイズ最適化をゼロから
brainpadpr
2
810
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
WCS-LA-2024
lcolladotor
0
120
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
230
ベイズのはなし
techmathproject
0
290
ICRA2024 速報
rpc
3
5.2k
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.3k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.5k
Spectral Sparsification of Hypergraphs
tasusu
0
170
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
150
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
222
8.9k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Ruby is Unlike a Banana
tanoku
97
11k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
GraphQLとの向き合い方2022年版
quramy
43
13k
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion