Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.5k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
280
仮説検定とP値
shuntaros
8
11k
Target trial emulationの概要
shuntaros
2
3.5k
Win ratio その2
shuntaros
0
540
Win ratioとは何か?
shuntaros
0
3k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.2k
「回帰分析から分かること」と「変数選択」
shuntaros
17
21k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.7k
Other Decks in Science
See All in Science
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
120
凸最適化からDC最適化まで
santana_hammer
1
330
2025-05-31-pycon_italia
sofievl
0
110
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
110
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
150
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
380
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.7k
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.4k
The Cult of Friendly URLs
andyhume
79
6.7k
GitHub's CSS Performance
jonrohan
1032
470k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Practical Orchestrator
shlominoach
190
11k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion