Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.3k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
2.3k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
220
仮説検定とP値
shuntaros
8
10k
Target trial emulationの概要
shuntaros
2
3.4k
Win ratio その2
shuntaros
0
520
Win ratioとは何か?
shuntaros
0
2.8k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.1k
「回帰分析から分かること」と「変数選択」
shuntaros
16
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.6k
Other Decks in Science
See All in Science
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
550
学術講演会中央大学学員会府中支部
tagtag
0
300
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
610
Symfony Console Facelift
chalasr
2
460
MCMCのR-hatは分散分析である
moricup
0
430
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
250
データマイニング - ウェブとグラフ
trycycle
PRO
0
160
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
830
SciPyDataJapan 2025
schwalbe10
0
250
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
Transport information Geometry: Current and Future II
lwc2017
0
180
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
890
Featured
See All Featured
For a Future-Friendly Web
brad_frost
179
9.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
4 Signs Your Business is Dying
shpigford
184
22k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
What's in a price? How to price your products and services
michaelherold
246
12k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Embracing the Ebb and Flow
colly
87
4.8k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion