Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
WSDM 2016勉強会資料
Search
Shinichi Takayanagi
March 17, 2016
Research
1
1.1k
WSDM 2016勉強会資料
「WSDM 2016勉強会」(
https://atnd.org/events/74341)の担当箇所資料
。
Shinichi Takayanagi
March 17, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
430
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.8k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
1.9k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
540
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
28
20k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
280
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.2k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.6k
Other Decks in Research
See All in Research
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
720
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
150
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
200
精度を無視しない推薦多様化の評価指標
kuri8ive
1
240
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
1
100
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
230
Language is primarily a tool for communication rather than thought
ryou0634
4
740
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
250
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
370
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Site-Speed That Sticks
csswizardry
0
26
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Practical Orchestrator
shlominoach
186
10k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Typedesign – Prime Four
hannesfritz
40
2.4k
Transcript
WSDM 2016勉強会 「Wiggins: Detecting Valuable Information in Dynamic Networks Using
Limited Resources」 Ahmad Mahmoody, Matteo Riondato, Eli Upfal 株式会社リクルートコミュニケーションズ ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
モチベーション • 動的ネットワーク上での情報検知は有用 – 新しいWebページの検出 – 電気回路上での欠陥の伝搬 – 水の汚染の検出 •
情報がネットワーク上を伝搬していく • 情報を新規性のあるうちに見つけたい • 一方、全ノードを常に監視するのは難しい – 各時点において一部のノードを調査できる状況を考える • どうノードを調査すべきかの最適なスケジューリン グを考えたい 2
やったこと • 各種定義 – ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 –
異なるスケジュール間のコストを定義 • これらを最適調査計画問題(Optimal Probing Schedule Problem)として定義づける • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 – MapReduce適用な形で提案 – WIGGINSってのはシャーロックホームズに出てくる諜報 機関?のリーダの名前らしい 3
2:問題の定式化 • グラフ構造: • ノード数: • ノードの部分集合族: • ある関数(確率): :
→ • グラフ上での情報生成・伝搬過程: – 時点tにおいて生成される情報(集合族): – あるノード部分集合 が に含まれる確率 • Sは論文中ではσ加法族と区別するために導入 – 単なるVの部分集合と考える、かつ、その生起確率を定義 • (t, S): “時点tに生成された情報が 手元にある る”を表現(アイテムと呼称) 4
2:問題の定式化 • “時点tにおいて調査する” =アイテム集合を得る • 過去に生成された情報の和集合: • 全時点ではc個のノードのみを調べる • :時点tより以前に取得
• :時点tにおいてまだここにない • 情報の新規性: • まだ見ぬ情報集合 によるLoad 5
• スケジュールpはノードV上の確率分布 • 時点tにおいてc個のうち 個ノードを選択 • コスト関数を定義(スケジュールpに依存!) • これを解く: (θ,
c)-OPSP – (θ, c)-Optimal Probing Schedule Problem – スケジュール集合: 6 2:問題の定式化
3: 関連研究 • 水汚染の検出[1, 13, 20, 24, 29] • 伝染病の検出[7]
• センサーのバッテリー消費最適化[11, 19, 21, 22] • SNS上での急伸トピックの検出[4, 25] • クローリング [8, 32] • ニュースフィードの更新[3, 15, 28, 30] 7
4:WIGGINSアルゴリズム • が既知の場合 • は凸関数 • 拘束条件付きの最適化問題として以下を解く 8
4:WIGGINSアルゴリズム 9
• 限られた(離散的な)情報しかわからない場合 • アルゴリズムはこの部分だけを変更する • Sごとにmapして計算(mapReduce) 10 4:WIGGINSアルゴリズム
5:数値実験 • Independent-Cascade (IC) model [17]を使用 • 生成(creation)フェイズ – ノード上に噂”rumor”を生成し、そのノードの出次数
(出 て行く辺数、outdegree, deg+)に応じて確率にbiasを付 けて生成を行わせる • 伝搬(diffusion)フェイズ – 確率1/伝搬先の入次数(入ってくる辺数indegree, deg-) で伝搬 11
• 他のベンチマーク的な方法 – 一様、out or indegree・接続数に比例で選択 • これらに比べてコスト関数が小さくなる 12 5:数値実験
• 一度最適化したもの に負荷を与える(灰 色箇所始端からノー ドの値をランダムに ひっくり返す) • 緑色箇所にてまた最 適化計算 13
5:数値実験
• ノイズの影響がまた消える 14 5:数値実験
まとめ • ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 – 異なるスケジュール間のコストを定義 •
これらを最適調査計画問題(Optimal Probing Schedule Problem)として定式化 • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 • 数値検証実施 15