Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
WSDM 2016勉強会資料
Search
Shinichi Takayanagi
March 17, 2016
Research
1
1.2k
WSDM 2016勉強会資料
「WSDM 2016勉強会」(
https://atnd.org/events/74341)の担当箇所資料
。
Shinichi Takayanagi
March 17, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
510
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
600
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
330
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.3k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.7k
Other Decks in Research
See All in Research
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
150
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
720
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
620
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.3k
NLP2025SharedTask翻訳部門
moriokataku
0
290
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
420
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
350
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
6
2.3k
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
190
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
380
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
180
大規模日本語VLM Asagi-VLMにおける合成データセットの構築とモデル実装
kuehara
5
2.2k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Code Reviewing Like a Champion
maltzj
523
40k
Facilitating Awesome Meetings
lara
54
6.4k
GraphQLとの向き合い方2022年版
quramy
46
14k
The Cost Of JavaScript in 2023
addyosmani
49
8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.3k
Documentation Writing (for coders)
carmenintech
71
4.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Designing for Performance
lara
608
69k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Transcript
WSDM 2016勉強会 「Wiggins: Detecting Valuable Information in Dynamic Networks Using
Limited Resources」 Ahmad Mahmoody, Matteo Riondato, Eli Upfal 株式会社リクルートコミュニケーションズ ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
モチベーション • 動的ネットワーク上での情報検知は有用 – 新しいWebページの検出 – 電気回路上での欠陥の伝搬 – 水の汚染の検出 •
情報がネットワーク上を伝搬していく • 情報を新規性のあるうちに見つけたい • 一方、全ノードを常に監視するのは難しい – 各時点において一部のノードを調査できる状況を考える • どうノードを調査すべきかの最適なスケジューリン グを考えたい 2
やったこと • 各種定義 – ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 –
異なるスケジュール間のコストを定義 • これらを最適調査計画問題(Optimal Probing Schedule Problem)として定義づける • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 – MapReduce適用な形で提案 – WIGGINSってのはシャーロックホームズに出てくる諜報 機関?のリーダの名前らしい 3
2:問題の定式化 • グラフ構造: • ノード数: • ノードの部分集合族: • ある関数(確率): :
→ • グラフ上での情報生成・伝搬過程: – 時点tにおいて生成される情報(集合族): – あるノード部分集合 が に含まれる確率 • Sは論文中ではσ加法族と区別するために導入 – 単なるVの部分集合と考える、かつ、その生起確率を定義 • (t, S): “時点tに生成された情報が 手元にある る”を表現(アイテムと呼称) 4
2:問題の定式化 • “時点tにおいて調査する” =アイテム集合を得る • 過去に生成された情報の和集合: • 全時点ではc個のノードのみを調べる • :時点tより以前に取得
• :時点tにおいてまだここにない • 情報の新規性: • まだ見ぬ情報集合 によるLoad 5
• スケジュールpはノードV上の確率分布 • 時点tにおいてc個のうち 個ノードを選択 • コスト関数を定義(スケジュールpに依存!) • これを解く: (θ,
c)-OPSP – (θ, c)-Optimal Probing Schedule Problem – スケジュール集合: 6 2:問題の定式化
3: 関連研究 • 水汚染の検出[1, 13, 20, 24, 29] • 伝染病の検出[7]
• センサーのバッテリー消費最適化[11, 19, 21, 22] • SNS上での急伸トピックの検出[4, 25] • クローリング [8, 32] • ニュースフィードの更新[3, 15, 28, 30] 7
4:WIGGINSアルゴリズム • が既知の場合 • は凸関数 • 拘束条件付きの最適化問題として以下を解く 8
4:WIGGINSアルゴリズム 9
• 限られた(離散的な)情報しかわからない場合 • アルゴリズムはこの部分だけを変更する • Sごとにmapして計算(mapReduce) 10 4:WIGGINSアルゴリズム
5:数値実験 • Independent-Cascade (IC) model [17]を使用 • 生成(creation)フェイズ – ノード上に噂”rumor”を生成し、そのノードの出次数
(出 て行く辺数、outdegree, deg+)に応じて確率にbiasを付 けて生成を行わせる • 伝搬(diffusion)フェイズ – 確率1/伝搬先の入次数(入ってくる辺数indegree, deg-) で伝搬 11
• 他のベンチマーク的な方法 – 一様、out or indegree・接続数に比例で選択 • これらに比べてコスト関数が小さくなる 12 5:数値実験
• 一度最適化したもの に負荷を与える(灰 色箇所始端からノー ドの値をランダムに ひっくり返す) • 緑色箇所にてまた最 適化計算 13
5:数値実験
• ノイズの影響がまた消える 14 5:数値実験
まとめ • ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 – 異なるスケジュール間のコストを定義 •
これらを最適調査計画問題(Optimal Probing Schedule Problem)として定式化 • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 • 数値検証実施 15