Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010. L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul, and B. Sch¨ olkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004. URL http://leon.bottou.org/papers/bottou-lecun-2004. X. Chen, Q. Lin, and J. Pena. Optimal regularized dual averaging methods for stochastic optimization. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 395–403. Curran Associates, Inc., 2012. S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma. Technical Report 99–006, U.C. Berkeley, 1999. A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1646–1654. Curran Associates, Inc., 2014. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. 119 / 167