Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第8回スライド
Search
TechmathProject
September 04, 2024
Science
0
32
線形代数学入門講座 第8回スライド
てくますプロジェクトで行った線形代数学入門講座の第8回スライドです。
実施:2024/08/26
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
73
統計学入門講座 第3回スライド
techmathproject
0
46
統計学入門講座 第2回スライド
techmathproject
0
63
統計学入門講座 第1回スライド
techmathproject
0
220
線形代数学入門講座 第1回スライド
techmathproject
0
49
線形代数学入門講座 第2回スライド
techmathproject
0
40
線形代数学入門講座 第3回スライド
techmathproject
0
26
線形代数学入門講座 第4回スライド
techmathproject
0
25
線形代数学入門講座 第5回スライド
techmathproject
0
25
Other Decks in Science
See All in Science
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
190
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
1.9k
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
210
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
130
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
120
FOGBoston2024
lcolladotor
0
150
最適化超入門
tkm2261
14
3.4k
LIMEを用いた判断根拠の可視化
kentaitakura
0
430
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
110
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
140
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
130
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
7.2k
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How STYLIGHT went responsive
nonsquared
98
5.4k
GraphQLとの向き合い方2022年版
quramy
44
13k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
330
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Writing Fast Ruby
sferik
628
61k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
The Language of Interfaces
destraynor
156
24k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Experiences People Love
moore
140
23k
Transcript
線形代数学 入門講座 ⑧行列の対角化 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列の対角化 対角化の求め方 対角化可能性 対角化の応用
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑧行列の対角化 対角行列とべき乗 行列の積は複雑に定義されていたので、𝑛 乗の計算も簡単ではありません。 −1 −2 3 4 2
= −5 −6 9 10 , −1 −2 3 4 3 = −13 −14 21 22 , ⋯ 対角行列のときは、 𝑛 乗の計算は簡単です。 1 0 0 2 2 = 1 0 0 4 , 1 0 0 2 3 = 1 0 0 8 , ⋯ 対角行列のべき乗の計算を利用して、一般の行列のべき乗を考えていきます。
線形代数学 ⑧行列の対角化 行列の対角化 行列 𝐴 に対して、𝑃−1𝐴𝑃 = 𝐵 となるような正則行列 𝑃
と対角行列 𝐵 を 求めることを行列 𝐴 の対角化といいます。 (例) 行列 𝐴 = −1 −2 3 4 に対して、 𝑃 = −1 −2 1 3 , 𝐵 = 1 0 0 2 とすると、 𝑃 = −3 −2 1 1 であり、 𝑃−1𝐴𝑃 = −3 −2 1 1 −1 −2 3 4 −1 −2 1 3 = 1 0 0 2 = 𝐵 なので、 これは行列 𝐴 の対角化である。
線形代数学 ⑧行列の対角化 正則行列 𝑃 の求め方 𝑛 次正方行列 𝐴 の対角化 𝑃−1𝐴𝑃
= 𝐵 の 𝑃 はどのように求めるのでしょうか。 ベクトル 𝒗1 が行列 𝐴 の固有値 𝜆1 に属する固有ベクトルであるとき、 固有ベクトルの定義から、𝐴𝒗1 = 𝜆1 𝒗1 となりました。 固有値 𝜆𝑖 と固有ベクトル 𝒗𝑖 で1次独立なものが 𝑛 個とれたとき、 それらを横に並べた行列 𝒗1 ⋯ 𝒗𝑛 は正則であり、これを 𝑃 とすれば、 𝐴𝑃 = 𝐴𝒗1 ⋯ 𝐴𝒗𝑛 = 𝜆1 𝒗1 ⋯ 𝜆𝑛 𝒗𝑛 = 𝑃 𝜆1 0 0 0 ⋱ 0 0 0 𝜆𝑛 なので、 これが行列 𝐴 の対角化の正則行列 𝑃 となります。
線形代数学 ⑧行列の対角化 正則行列 𝑃 の求め方 (例) 行列 𝐴 = −1
−2 3 4 に対して、 −1 1 は固有値 1 に, −2 3 は固有値 2 に属する固有ベクトルであった。 −1 1 と −2 3 は1次独立なので、 𝑃 = −1 −2 1 3 , 𝐵 = 1 0 0 2 とすると、 𝑃−1𝐴𝑃 = 𝐵 なので、これは行列 𝐴 の対角化である。
線形代数学 ⑧行列の対角化 対角化可能性 𝑛 次正方行列 𝐴 はいつでも対角化できるのでしょうか? 𝐴𝑃 = 𝐴𝒗1
⋯ 𝐴𝒗𝑛 = 𝜆1 𝒗1 ⋯ 𝜆𝑛 𝒗𝑛 のようできるためには、 行列 𝐴 の固有値 𝜆𝑖 と固有ベクトル 𝒗𝑖 で1次独立なものが 𝑛 個なければなりません。 各固有値の固有空間からとれる1次独立なベクトルの数はその次元以下なので、 をみたすことが、 𝐴 が対角化できるための条件になります。 の固有値 (固有空間の次元の和が 𝑛 と一致する) 𝜆∶𝐴 dim(𝑊(𝜆; 𝐴)) = 𝑛
線形代数学 ⑧行列の対角化 対角化可能性 (例) 行列 𝐴 = 1 0 0
1 に対して、𝐴 の固有値は 1 のみであり、 dim(𝑊 1 ; 𝐴 ) = dim 𝑐1 1 0 + 𝑐2 0 1 ∈ ℝ2 𝑐1 , 𝑐2 ∈ ℝ = 2 なので、 𝐴 は対角化可能である。 行列 𝐵 = 1 2 0 1 に対して、𝐵 の固有値は 1 のみであり、 dim(𝑊 1 ; 𝐵 ) = dim 𝑐 1 0 ∈ ℝ2 𝑐 ∈ ℝ = 1 なので、 𝐵 は対角化不可能である。
線形代数学 ⑧行列の対角化 対角化の応用 行列の対角化はべき乗の計算に利用できます。 行列 𝐴 が 𝑃−1𝐴𝑃 = 𝐵と対角化できるとき、𝐴𝑛
= 𝑃(𝑃−1𝐴𝑃)𝑛𝑃−1 = 𝑃𝐵𝑛𝑃−1 (例) 行列 𝐴 = −1 −2 3 4 に対して、 −3 −2 1 1 𝐴 −1 −2 1 3 = 1 0 0 2 と対角化できるので、 𝐴𝑛 = −1 −2 1 3 1 0 0 2 𝑛 −3 −2 1 1 = −2𝑛+1 + 3 −2+1 + 2 3 ∙ 2𝑛 − 3 3 ∙ 2𝑛 − 2
線形代数学 ⑧行列の対角化 対角化の応用 2次形式という2次の項のみでできた式 (例:𝑥2 + 4𝑥𝑦 − 2𝑦2) を
標準形という同じ文字の2次の項のみでできた式 (例:2𝑥2 − 3𝑦2) にする 変数変換を考えるときにも対角化が利用される。 (例) 𝑥2 + 4𝑥𝑦 − 2𝑦2 = 𝑥 𝑦 1 2 2 −2 𝑥 𝑦 と表すことができ、 2 1 1 −2 −1 1 2 2 −2 2 1 1 −2 = 2 0 0 −3 なので、 𝑥′ 𝑦′ = 2 1 1 −2 −1 𝑥 𝑦 と変数変換すると、2𝑥′2 − 3𝑦′2 = 𝑥2 + 4𝑥𝑦 − 2𝑦2
線形代数学 ⑧行列の対角化 まとめ ・行列 𝐴 に対して、𝑃−1𝐴𝑃 = 𝐵 で対角行列にすることを対角化という。 ・対角化に用いる行列は固有ベクトルを横に並べたものである。
・対角化可能の条件は固有空間の次元の和が全体の次元と等しいことである。 ・行列の対角化は、行列のべき乗を計算するときなどに利用できる。