Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第5回スライド
Search
TechmathProject
September 04, 2024
Science
0
23
線形代数学入門講座 第5回スライド
てくますプロジェクトで行った線形代数学入門講座の第5回スライドです。
実施:2024/06/17
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
52
統計学入門講座 第3回スライド
techmathproject
0
37
統計学入門講座 第2回スライド
techmathproject
0
53
統計学入門講座 第1回スライド
techmathproject
0
180
線形代数学入門講座 第1回スライド
techmathproject
0
44
線形代数学入門講座 第2回スライド
techmathproject
0
36
線形代数学入門講座 第3回スライド
techmathproject
0
24
線形代数学入門講座 第4回スライド
techmathproject
0
21
線形代数学入門講座 第6回スライド
techmathproject
0
24
Other Decks in Science
See All in Science
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
660
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
240
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
360
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
170
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.4k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.6k
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
110
【人工衛星】座標変換についての説明
02hattori11sat03
0
150
(2024) Livres, Femmes et Math
mansuy
0
120
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
270
WeMeet Group - 採用資料
wemeet
0
4k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Become a Pro
speakerdeck
PRO
26
5.1k
Mobile First: as difficult as doing things right
swwweet
222
9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
173
51k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
The Language of Interfaces
destraynor
155
24k
Music & Morning Musume
bryan
46
6.3k
Thoughts on Productivity
jonyablonski
68
4.4k
Side Projects
sachag
452
42k
Transcript
線形代数学 入門講座 ⑤行列式 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列式の定義 行列式の性質 行列式と正則性 行列式の幾何学的意味
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑤行列式 行列式の定義 𝑛次正方行列𝐴 = (𝑎𝑖𝑗 )に対して、σ𝜎∈𝑆𝑛 sgn(𝜎)𝑎1𝜎(1) 𝑎2𝜎(2) ⋯
𝑎𝑛𝜎(𝑛) を行列式といい、 det(𝐴)や 𝐴 と表します。 𝜎 1 = 4, 𝜎 2 = 2, 𝜎 3 = 1 𝜎 4 = 5, 𝜎 5 = 3 については、 (−1) × 𝑎14 × 𝑎22 × 𝑎31 × 𝑎45 × 𝑎53 これをすべての置換で考えて、和をとる。
線形代数学 ⑤行列式 行列式の計算例 (例) 2次正方行列 𝑎11 𝑎12 𝑎21 𝑎22 の行列式の計算
𝑆2 = 𝜀, (1 2) であり、sgn 𝜀 = 1, sgn 1 2 = −1なので、 𝑎11 𝑎12 𝑎21 𝑎22 = sgn 𝜀 𝑎11 𝑎22 + sgn (1 2) 𝑎12 𝑎21 = 𝑎11 𝑎22 − 𝑎12 𝑎21
線形代数学 ⑤行列式 行列式の計算例 (例) 3次正方行列の行列式の計算 𝑆3 = 𝜀, 1 2
, 2 3 , 3 1 , 1 2 3 , (1 3 2) であり、 sgn 𝜀 = sgn 1 2 3 = sgn((1 3 2)) = 1, sgn 1 2 = sgn 2 3 = sgn((3 1)) = −1なので、 𝑎11 𝑎22 𝑎33 + 𝑎12 𝑎23 𝑎31 + 𝑎13 𝑎21 𝑎32 − 𝑎12 𝑎21 𝑎33 − 𝑎11 𝑎23 𝑎32 − 𝑎13 𝑎22 𝑎31
線形代数学 ⑤行列式 行列式の性質 行列式には次のような性質があります。 (1) 1つの行を𝑐倍すると、行列式は𝑐倍になる。 (2) 2つの行を入れ換えると、行列式は−1倍になる。
線形代数学 ⑤行列式 行列式の性質 (3) 𝑖行目を2つの列ベクトルの和とみなしたとき、その行列式は、 他の行が同じで𝑖行目を各々の列ベクトルにした2つの行列式の和になる。 (4) 1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
線形代数学 ⑤行列式 行列式の性質 (5) 転置行列の行列式は、元の行列の行列式と変わらない。 det(𝑡𝐴) = det(𝐴) (6) 左上と右下を正方行列にブロック分けしたとき左下が零行列なら、
その行列式は、左上と右下の行列式の積になる。 det 𝐴 𝐵 𝑂 𝐷 = det(𝐴)det(𝐷) (7) 2つの行列の積の行列式は、2つの行列の行列式の積になる。 det 𝐴𝐵 = det(𝐴)det(𝐵)
線形代数学 ⑤行列式 行列式の計算方法 行列式の性質を利用すると、定義に戻らず行列式を計算することができます。 行基本変形をして、簡約な行列にします。 ・1つの行を𝑐倍すると、行列式は𝑐倍になる。 (性質(1)) ・2つの行を入れ換えると、行列式は−1倍になる。 (性質(2)) ・1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
(性質(4)) 簡約な行列は上三角行列なので、行列式は性質(6)から対角成分の積になります。
線形代数学 ⑤行列式 行列式と正則性 正方行列𝐴が正則であるかどうかは、行列式で判定することができます。 行列の行基本変形は、変形の前後で「行列式が0であるかどうか」を変えません。 ・𝐴が正則なら簡約化が単位行列になり、行列式は0になりません。 ・𝐴が正則でないなら簡約化の対角成分に0があるので、行列式は0になります。 正方行列𝐴が正則である ⇔ det(𝐴)
≠ 0
線形代数学 ⑤行列式 行列式の幾何学的意味 2次正方行列𝐴の行列式は、𝐴の2つの列ベクトルで張られる平行四辺形の面積に なります。 行ベクトルで張られる平行四辺形の面積も表しています。 𝑥 𝑦 0 𝑎
𝑐 𝑏 𝑑 面積 det 𝑎 𝑏 𝑐 𝑑
線形代数学 ⑤行列式 行列式の幾何学的意味 符号も考慮すると、行列式は1番目のベクトルから2番目のベクトルに向かって 左回りの向きで張られる平行四辺形の向き付き面積に対応します。 𝑛次正方行列についても、𝑛次元の格子の向き付き体積を表しています。 行列式は、微積分でも重積分の変数変換で使います。 「元の変数座標で面積1だった小さな正方形が、新しい変数座標で見たときに どのような面積の平行四辺形になっているか」が計算に必要だからです。 𝑥
𝑦 0 𝑏 𝑑 𝑎 𝑐 このときは det 𝑎 𝑏 𝑐 𝑑 < 0
線形代数学 ⑤行列式 まとめ ・置換を利用して行列式を定義できる。 ・行列式には様々な性質があり、行列式の計算に利用できる。 ・行列の正則性は、行列式が存在して0でないことと同値である。 ・行列式は、𝑛個の列ベクトルが張る𝑛次元格子の向き付き体積を表す。