Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第3回スライド
Search
TechmathProject
September 04, 2024
Science
0
24
線形代数学入門講座 第3回スライド
てくますプロジェクトで行った線形代数学入門講座の第3回スライドです。
実施:2024/05/20
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
52
統計学入門講座 第3回スライド
techmathproject
0
37
統計学入門講座 第2回スライド
techmathproject
0
53
統計学入門講座 第1回スライド
techmathproject
0
180
線形代数学入門講座 第1回スライド
techmathproject
0
44
線形代数学入門講座 第2回スライド
techmathproject
0
36
線形代数学入門講座 第4回スライド
techmathproject
0
21
線形代数学入門講座 第5回スライド
techmathproject
0
23
線形代数学入門講座 第6回スライド
techmathproject
0
24
Other Decks in Science
See All in Science
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
260
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
660
Transformers are Universal in Context Learners
gpeyre
0
650
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
330
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
1.8k
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
420
Inductive-bias Learning: 大規模言語モデルによる予測モデルの生成
fuyu_quant0
0
140
butterfly_effect/butterfly_effect_in-house
florets1
1
130
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
160
マクロ経済学の視点で、財政健全化は必要か
ryo18cm
1
120
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
170
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
150
Featured
See All Featured
Docker and Python
trallard
43
3.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
A designer walks into a library…
pauljervisheath
205
24k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
A Philosophy of Restraint
colly
203
16k
Building Adaptive Systems
keathley
38
2.4k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Designing for Performance
lara
604
68k
What's in a price? How to price your products and services
michaelherold
244
12k
Transcript
線形代数学 入門講座 ③正則行列 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列の階数 逆行列と正則行列 正則と同値な条件 簡約化で逆行列計算
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ③正則行列 行列の階数 行列𝐴の簡約化を𝐵とするとき、𝐵の零でない行ベクトルの個数を𝐴の階数といい、 rank(𝐴)と書きます。 (例) は簡約化が なので、階数は2である。 𝐴の階数は、主成分をもつ𝐵の列の個数と言い換えることもできます。
線形代数学 ③正則行列 行列の階数 行列の階数は、連立一次方程式の言葉で次のように捉えることができます。 解が存在するときは、解でパラメータとしなくてよい変数の数になっています。 (拡大係数行列の最右列の主成分は、解なしになる原因を作る主成分です。) よって、次が成り立ちます。 𝑛変数の連立一次方程式𝐴𝑥 = 𝑏に一意な解が存在
⇔ rank(𝐴)=rank(𝐴 𝑏) = 𝑛
線形代数学 ③正則行列 単位行列 対角成分が1で他の成分が0である正方行列を単位行列といいました。 単位行列はどのような意味をもつ行列なのでしょうか。 行列の積の定め方により、𝑛次の単位行列𝐸𝑛 は次をみたします。 𝐴𝐸𝑛 = 𝐸𝑛
𝐴 = 𝐴 (𝐴は𝑛次正方行列) 掛けたものを変えないという性質をもつ元を単位元といい、 実数の1もこのような性質をもちます。
線形代数学 ③正則行列 逆行列 実数では、掛けて1になる数を逆数といいました。 行列に対してもそのような行列を考えることができます。 𝑛次正方行列𝐴に対して、次をみたす𝑛次正方行列𝐵を𝐴の逆行列といいます。 𝐴𝐵 = 𝐵𝐴 =
𝐸𝑛 𝐴の逆行列を𝐴−1と書きます。 𝑥に掛けたとき単位元にするという性質をもつ元を𝑥の逆元といい、 実数𝑥の逆数 1 𝑥 もこのような性質をもちます。
線形代数学 ③正則行列 正則行列 実数では、0以外のすべての数に逆数がありました。 行列の場合、逆行列をもつ行列は限られています。 逆行列をもつ行列を正則行列といいます。 (例) は逆行列 をもつので、正則である。 は逆行列をもたないので、正則ではない。
線形代数学 ③正則行列 正則と同値な条件 行列が正則である条件は、いままででてきた行列の言葉で表すことができます。 𝑛次正方行列𝐴に対して、次の(1)~(4)が同値である。 (1) 𝐴は正則である。 (2) 任意の𝑛次列ベクトル𝑏に対して、連立一次方程式𝐴𝑥 =
𝑏が一意の解をもつ。 (3) rank(𝐴)= 𝑛 (4) 𝐴の簡約化が𝐸𝑛 である。
線形代数学 ③正則行列 正則と同値な条件 (証明) (1)⇒(2) 𝐴−1が存在するので、両辺に𝐴−1を掛けて𝑥 = 𝐴−1𝑏と解ける。 (2)⇒(1) 𝐴𝑥
= 𝑒𝑖 (𝑒𝑖 は基本ベクトル)が解𝑥𝑖 をもつので、𝐵 =(𝑥1 ⋯ 𝑥𝑛 )とすれば、 𝐴𝐵 =(𝐴𝑥1 ⋯ 𝐴𝑥𝑛 )= 𝐸𝑛 なので、𝐵が𝐴の逆行列となる。 (2)⇔(3) 階数と連立一次方程式の関係で確認した。 (3)⇔(4) 階数の定義から従う。 □
線形代数学 ③正則行列 簡約化で逆行列計算 𝑛次正方行列𝐴は、単位行列𝐸𝑛 と横に並べた行列を簡約化することで、 逆行列を計算することができます。 簡約化は左から行列を掛けることで表せるので、掛けていった行列が横の𝐸𝑛 にも 掛かっていきます。 𝐴が𝐸𝑛
になるまでに𝐴−1が掛けられたことになるので、𝐸𝑛 は𝐴−1になっています。 (𝐴 𝐸𝑛 ) → (𝐴−1𝐴 𝐴−1𝐸𝑛 ) = (𝐸𝑛 𝐴−1) 𝐴が正則でないときは簡約化が終わっても左側が𝐸𝑛 になりません。
線形代数学 ③正則行列 簡約化で逆行列計算 (例) の逆行列は の簡約化が なので、 である。
線形代数学 ③正則行列 まとめ ・連立一次方程式の解と関連する階数という値を簡約化から得ることができる。 ・積の逆元をもつ行列を正則行列という。 ・行列が正則であることは、階数や簡約化などの条件で表すことができる。 ・簡約化で逆行列を求めることができる。