Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第4回スライド
Search
TechmathProject
September 04, 2024
Science
0
30
線形代数学入門講座 第4回スライド
てくますプロジェクトで行った線形代数学入門講座の第4回スライドです。
実施:2024/06/03
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
100
統計学入門講座 第3回スライド
techmathproject
0
71
統計学入門講座 第2回スライド
techmathproject
0
84
統計学入門講座 第1回スライド
techmathproject
0
260
線形代数学入門講座 第1回スライド
techmathproject
0
57
線形代数学入門講座 第2回スライド
techmathproject
0
47
線形代数学入門講座 第3回スライド
techmathproject
0
34
線形代数学入門講座 第5回スライド
techmathproject
0
31
線形代数学入門講座 第6回スライド
techmathproject
0
38
Other Decks in Science
See All in Science
ICRA2024 速報
rpc
3
6.2k
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
130
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
530
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
730
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
150
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
280
証明支援系LEANに入門しよう
unaoya
0
750
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
230
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
290
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
210
観察研究における因果推論
nearme_tech
PRO
1
190
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Docker and Python
trallard
44
3.3k
Embracing the Ebb and Flow
colly
85
4.6k
How to Ace a Technical Interview
jacobian
276
23k
Why Our Code Smells
bkeepers
PRO
336
57k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.5k
Being A Developer After 40
akosma
90
590k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
KATA
mclloyd
29
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
Transcript
線形代数学 入門講座 ④置換 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 置換 様々な置換 置換の符号 あみだくじについて
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ④置換 行列式に向けて 今後、行列が正則であるかどうかがわかる行列式というものを定義します。 行列式はその行列の成分と置換の符号から定義されます。 行列式を計算するために、置換について学習しましょう。
線形代数学 ④置換 置換 𝑛個の文字{1, 2, ⋯ , 𝑛}から{1, 2, ⋯
, 𝑛}への一対一の対応を𝑛文字の置換といいます。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 は4文字の置換である。 1 1 2 2 3 3 4 4
線形代数学 ④置換 置換 置換𝜎は、1行目に1, 2, ⋯ , 𝑛を,2行目にσ 1 ,
𝜎 2 , ⋯ , 𝜎(𝑛)を並べることで 行列のように表します。 また、上下の組み合わせが変わらない限り列を入れ換えて表すことがあり、 動かさない文字は省略して表すことがあります。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 で定まる置換𝜎に対して、
線形代数学 ④置換 置換の積 𝑛文字の置換𝜎, 𝜏に対して、𝜏でうつした後𝜎でうつす置換を𝜎と𝜏の積といい、 𝜎𝜏と表します。 (例) , のとき、 ,
線形代数学 ④置換 様々な置換 ・単位置換𝜀…文字を動かさない置換。(置換の積に関する単位元) (例) ・𝜎の逆置換𝜎−1…𝜎との積が単位置換になる置換。(置換の積に関する逆元) (例) に対して、
線形代数学 ④置換 様々な置換 ・巡回置換…文字𝑘1 , 𝑘2 , ⋯ , 𝑘𝑟
のみを𝑘1 → 𝑘2 , 𝑘2 → 𝑘3 , ⋯ , 𝑘𝑟 → 𝑘1 とうつす置換。 (例) これを とも表す。 ・互換…2文字のみを動かす巡回置換。 (例)
線形代数学 ④置換 巡回置換の積で表示 任意の置換は、使う文字が被らない巡回置換の積で表すことができます。 (例) について考えると、 まず、文字1がどううつっていくか調べる。 1 → 3
→ 6 → 4 → 1となり、この4つの文字は巡回置換 1 3 6 4 で動く。 次に、この4文字以外の文字2がどううつっていくか調べる。 2 → 7 → 2となり、この2つの文字は巡回置換 2 7 で動く。 これを文字を使い切るまで行う。
線形代数学 ④置換 互換の積で表示 任意の巡回置換は、互換の積で表すことができます。 つまり、任意の置換は互換の積で表せます。 (例)
線形代数学 ④置換 置換の符号 置換𝜎が𝑚個の互換の積で表されるとき、sgn 𝜎 = (−1)𝑚 を𝜎の符号といいます。 置換の互換の積での表し方は1通りではありませんが、 sgn
𝜎 は決まります。 (例) について、 なので、 sgn 𝜎 = (−1)4= 1 符号が1である置換を偶置換,符号が-1である置換を奇置換といいます。
線形代数学 ④置換 あみだくじについて あみだくじを作るとき、置換の図で矢印の交点がある高さに横棒を描くと、 その置換に従って入れ換えをするあみだくじが得られます。 あみだくじの横線は、隣接互換(隣りの文字を入れ換える互換)に対応していて、 任意の置換が隣接互換の積で表せることの図形的な説明になっています。 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 (3 4)(2 3)(3 4)(1 2) 1 2 4 4 1 2
線形代数学 ④置換 まとめ ・いくつかの文字を入れ換える写像を置換という。 ・置換には、単位置換,逆置換,巡回置換,互換などがある。 ・置換は互換の積で表すことができ、必要な互換の数で符号を定義できる。 ・あみだくじは置換のことばで表すことができる。