Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Custom model importを試してみる
Search
ttnyt8701
February 19, 2025
Programming
2
79
Amazon Bedrock Custom model importを試してみる
【AWS活用 徹底Amazon Bedrock #3】カスタムモデル 編
https://blueish.connpass.com/event/345802/
ttnyt8701
February 19, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Vertex AI Agent Builderとは?
ttnyt8701
2
72
A2A(Agent2Agent )とは? 基礎・概要
ttnyt8701
0
82
Amazon Bedrock LLM as a Judgeを試す
ttnyt8701
0
11
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
ttnyt8701
2
53
Amazon SageMaker Lakehouseでデータのサイロ化による課題を解決する
ttnyt8701
1
29
Langsmith入門 トレーシングとプロンプト管理を試す
ttnyt8701
1
76
Prompt Cachingは本当に効果的なのか検証してみた.pdf
ttnyt8701
1
650
Other Decks in Programming
See All in Programming
AIコーディングエージェントを 「使いこなす」ための実践知と現在地 in ログラス / How to Use AI Coding Agent in Loglass
rkaga
4
1.2k
Empowering Developers with HTML-Aware ERB Tooling @ RubyKaigi 2025, Matsuyama, Ehime
marcoroth
2
950
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
3
1.4k
Creating Awesome Change in SmartNews! En
martin_lover
0
110
20250429 - CNTUG Meetup #67 / DevOps Taiwan Meetup #69 - Deep Dive into Tetragon: Building Runtime Security and Observability with eBPF
tico88612
0
160
開発者フレンドリーで顧客も満足?Platformの秘密
algoartis
0
160
RuboCop: Modularity and AST Insights
koic
2
2.4k
インプロセスQAにおいて大事にしていること / In-process QA Meetup
medley
0
140
20250426 GDGoC 合同新歓 - GDGoC のススメ
getty708
0
110
Dissecting and Reconstructing Ruby Syntactic Structures
ydah
3
2k
Make Parsers Compatible Using Automata Learning
makenowjust
2
6.9k
オープンソースコントリビュート入門
_katsuma
0
120
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
133
9.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
A designer walks into a library…
pauljervisheath
205
24k
Faster Mobile Websites
deanohume
306
31k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.3k
Visualization
eitanlees
146
16k
Six Lessons from altMBA
skipperchong
28
3.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Facilitating Awesome Meetings
lara
54
6.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Being A Developer After 40
akosma
91
590k
Transcript
Amazon Bedrock Custom Model Importを試してみる 立野 祐太 2025.02.19 ©BLUEISH 2024.
All rights reserved.
立野 祐太 Yuta Tateno ・Go、GCPでの開発・運用 バックエンドエンジニア 自己紹介 ©BLUEISH 2024. All
rights reserved.
©BLUEISH 2024. All rights reserved. 最新のオープンソースモデルや独自のカスタムモデルをす ぐに・簡単に・安全に使いたい! 👉Amazon Bedrock Custom
Model Importで実現できます
©BLUEISH 2024. All rights reserved. 独自にトレーニングしたモデルやオープンソースモデルを Bedrock上でAPI として運用できる機能 Amazon Bedrock
Custom Model Import とは
- オープンソースモデル、外部でトレーニングしたモデル、自社 開発モデルをBedrockで使える - APIとしてサーバー管理不要で簡単に利用できる - AWSのナレッジベース、エージェント、ガードレールなどの ツールと統合可能 - AWS
のセキュリティとコンプライアンスの枠組み内で安全に運 用 ©BLUEISH 2024. All rights reserved. 主な利点
©BLUEISH 2024. All rights reserved. 対応アーキテクチャ - Mistral - Mixtral
- Flan - Llama 2、Llama3、Llama3.1、Llama3.2、および Llama 3.3 👉すべてのモデルが利用できるわけではない。アーキテクチャの変換や蒸留などの 工夫が必要 対応リージョン - 米国東部 (バージニア北部) - 米国西部 (オレゴン)
©BLUEISH 2024. All rights reserved. - カスタムモデルユニット:インポートしたモデルのアーキテクチャ、パラメータ数、コン テキスト長などに基づいて消費されるリソース単位。インポートした際に決定される。 - 5
分単位で料金が発生 - リクエストによってインスタンス数が自動でスケール カスタムモデルユニットあたりの推論コスト/分: 0.0785(USD) カスタムモデルユニットあたりのストレージコスト/月: 1.95(USD) 料金体系
©BLUEISH 2024. All rights reserved. Llma 3.1 70Bを7分間利用した例 カスタムモデルユニットあたりの推論コスト/分: $0.0785
カスタムモデルユニットあたりのストレージコスト/月: $1.95 カスタムモデルユニット数: 8 (ドキュメント記載の値を参考) 利用時間: 7分 5 分単位でのウィンドウ数: 2 インスタンス数:1 推論コスト:0.0785 * 8 * 2 * 1 = $1.256 👉軽量なモデルで推論速度が速いほどコストは安くなりそう ストレージコスト:1.95 * 8 = $15.6 / 月
Deep Seekカスタムモデルをインポートしてみる ©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 1. モデルの準備 アーキテクチャに対応した任意のモデルを用意 今回はDeepSeek-R1-Distill-Llama-8Bを量子化したカスタムモデルをデ プロイ
©BLUEISH 2024. All rights reserved. 2. S3バケットにモデルをアップロード
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 4. Custom Model Importからモデルをインポート
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 5. インポートしたモデルを実行してみる
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 最新のオープンソースモデル、外部でカスタムしたモデル、自社開 発モデルなどを速く、簡単、安全、効率的にAWS上で活用できる! まとめ