Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
Search
ttnyt8701
March 12, 2025
Programming
3
85
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
【AWS活用 AI/ML/LLM #6】機械学習/大規模言語モデル モデリング
https://blueish.connpass.com/event/348098/
ttnyt8701
March 12, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Gemini CLI のはじめ方
ttnyt8701
1
230
ObsidianをMCP連携させてみる
ttnyt8701
3
3.5k
Claude Codeの使い方
ttnyt8701
2
350
FastMCPでMCPサーバー/クライアントを構築してみる
ttnyt8701
3
620
LangChain Open Deep Researchとは?
ttnyt8701
2
360
Vertex AI Agent Builderとは?
ttnyt8701
4
330
A2A(Agent2Agent )とは?
ttnyt8701
2
440
Amazon Bedrock LLM as a Judgeを試す
ttnyt8701
2
110
Amazon SageMaker Lakehouseでデータのサイロ化による課題を解決する
ttnyt8701
2
48
Other Decks in Programming
See All in Programming
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
5.9k
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
160
Cap'n Webについて
yusukebe
0
150
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
280
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
260
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
150
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
170
tparseでgo testの出力を見やすくする
utgwkk
2
280
Developing static sites with Ruby
okuramasafumi
0
320
Featured
See All Featured
Become a Pro
speakerdeck
PRO
31
5.7k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
First, design no harm
axbom
PRO
1
1.1k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
250
Code Review Best Practice
trishagee
74
19k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Building an army of robots
kneath
306
46k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Transcript
Amazon Sagemaker Jump Startを用いて爆速でモデル を作成してみる🚀 2025.03.13 ©BLUEISH 2025. All rights
reserved.
立野 祐太 Yuta Tateno WEB開発(Go、GCP) 画像認識やRAGを用いた開発 WEBエンジニア 自己紹介 ©BLUEISH 2024.
All rights reserved.
ゴール Amazon Sagemaker Jump Startを用いたモデル作成方法を共有し、簡単に爆速でモ デルが作れるイメージを掴んでもらうこと
Amazon Sagemaker Jump Start とは? 機械学習のスターターキット 主な機能 ❏ 事前学習済みモデルの利用 :
すぐに使える AI モデルが多数用意 ❏ 簡単なカスタマイズ : ファインチューニング可能 ❏ 簡単なデプロイ : ボタン数クリックか SDK で本番環境に展開ができる ❏ モデル比較 : 品質や責任に関する指標でモデルを比較・選択ができる ❏ 組織内共有 : チーム内でモデルやノートブックを共有ができる
人物画像を入力することで年齢推定できるモデルを作成する さっそくやってみましょう! 🚀
Sagemaker Studioにアクセス
Jump Start 学習済みのモデルを利用できる
モデル選定 用途: 画像認識を用いた年齢推定
モデル選定
モデル選定 EfficientNet-B3を選択
モデル選定
モデルの検証 デプロイをし、素のモデル出力を確認する
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : jersey モデルの予測 (上位5):
jersey, window shade, Band Aid, sunscreen, bulletproof vest 👉ファインチューニングを行い年齢推定 モデルにしていく
1. 人物画像と年齢のデータセットを収集 2. データセットをラベリング(前処理) 3. ファインチューニングを行う 4. デプロイ 5. モデルを検証
ファインチューニングの流れ
https://susanqq.github.io/UTKFace/ 人物の画像と年齢のデータセットを収集 UTKFaceで1~110歳までの学習データを約1万 枚 データセットの準備
データセットの前処理 ラベリング方法についてモデルページを確認 ディレクトリ名: 正解ラベル、ディレクトリの中: 学習用データとなるようにする
データセットのアップロード S3に前処理したデータセットをアップロード
ファインチューニング
ファインチューニング 1. S3にアップロードしたデータセット の選択 2. ハイパーパラメータの設定など行 う(今回はデフォルト)
ファインチューニング 1万枚のデータに対して約10分で完了(インスタンス:ml.p3.2xlarge) デプロイをしてモデルを検証
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : 14 モデルの予測 (上位5):
14,52,26,27,29 正解はしなかったが、年齢推定モデルを 開発することができた 🚀
モデルの検証 正解はしなかったが、年齢推定モデルを開発することができた 🚀 アジア人のデータセットの学習量を増やす、より適切・高精度なモデル・アルゴリズムを 選択することで精度向上を望めそう!
まとめ 🔰 非エンジニアでもモデルを簡単に作成することが可能 🧠 適切なモデル選定、適切なデータセットがあれば精度向上可能 🚀 学習時間約10分、トータルでも約数十分で爆速開発可能だった (データセットのアップロード時間除く)