Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
Search
winnie279
August 12, 2021
Science
0
460
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
バックプロパゲーションと勾配消失問題, 中村勇士, 2021
winnie279
August 12, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
5
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
66
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
70
5分で学ぶOpenAI APIハンズオン
yjn279
0
210
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
180
もう一度理解するTransformer(後編)
yjn279
0
84
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
110
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
800
Other Decks in Science
See All in Science
学術講演会中央大学学員会府中支部
tagtag
0
330
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
140
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.4k
Ignite の1年間の軌跡
ktombow
0
180
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
700
HDC tutorial
michielstock
0
240
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
My Little Monster
juzishuu
0
300
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
(2025) Balade en cyclotomie
mansuy
0
250
データベース02: データベースの概念
trycycle
PRO
2
980
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Facilitating Awesome Meetings
lara
57
6.7k
Context Engineering - Making Every Token Count
addyosmani
9
500
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
バックプロパゲーションと勾配 消失問題 金研 機械学習勉強会 2021/08/12 中村勇士
単純パーセプトロン x 1 x 2 x 3 x 4 x
5 y モデル化 w i :x i がどのくらい重要か(重み) 補正項 (バイアス) ニューロン ステップ関数 単純 パーセプトロン シグモイド関数
最適化 最初から最適な重み・バイアスは分からない → 重みの初期値はランダム 出力と正解がずれる(誤差) → トレーニングで重みの誤差を修正する
最適化 • 重みを変えると誤差は どうなるか? • グラフ ◦ 重み↓
誤差↓ ⇒ 重みを減らす ◦ 重み↑ 誤差↓ ⇒ 重みを増やす • 傾きを調べればよい
単純パーセプトロンのまとめ Forward Back 誤差を修正して重みを更新・最適化
ディープニューラルネットワーク モデル化
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 y 1 y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Forward propagation 最初の重みはランダム → 計算した出力と正解には誤差がある
x 31 x 32 x 33 x 34 y 1
y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 21 x 22 x 23 x 24 x 11 x 12 x 13 x 11 x 12 x 13 y 1 y 2 Back propagation(誤差逆伝播法) Back propagation
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Back propagation ディープニューラルネットワークのまとめ
勾配消失問題 • 傾きがほぼ0になり学習が 進まなくなる → 学習は終了していない
• 層が多いほど発生しやすい • inputに近いほど発生しやすい
勾配消失問題 左の層ほど0.25以下の数をたくさんかける → 傾きが小さくなる シグモイド関数の 微分 シグモイド関数 Back
propagationの計算のため微分 → maxが0.25 (0.25)4 ≒ 0.004
勾配消失問題への対処 傾きがシグモイド関数より大きい x > 0で傾きが常に1 x ≤ 0に傾きをつけるなど
活性化関数の改善
• Batch Normalization ◦ 各バッチを正規化 (バッチ:グループ分けされたデータ) ◦ 平均0, 分散1にする
• メリット ◦ 学習率を上げられる → 勾配が小さくても学習できる ◦ 過学習を防ぐ → 従来の方法より高速 勾配消失問題への対処