Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
会社訪問アプリ「Wantedly Visit」における新規ユーザーの行動量に基づいた推薦方策の選択
Search
Yudai Hayashi
March 01, 2024
Technology
0
2.6k
会社訪問アプリ「Wantedly Visit」における新規ユーザーの行動量に基づいた推薦方策の選択
DEIM2024での技術報告の際のスライドです
Yudai Hayashi
March 01, 2024
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
20
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
590
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.1k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
36
MCPを理解する
yudai00
16
11k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
170
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
1.9k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
870
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
280
Other Decks in Technology
See All in Technology
2025新卒研修・HTML/CSS #弁護士ドットコム
bengo4com
2
4.1k
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
220
Datasets for Critical Operations by Dataform
kimujun
0
140
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
10
2.9k
20250728 MCP, A2A and Multi-Agents in the future
yoshidashingo
1
160
モバイルゲームの開発を支える基盤の歩み ~再現性のある開発ラインを量産する秘訣~
qualiarts
0
940
2025-07-31: GitHub Copilot Agent mode at Vibe Coding Cafe (15min)
chomado
2
290
SAE J1939シミュレーション環境構築
daikiokazaki
1
200
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
0
310
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
380
AWS表彰プログラムとキャリアについて
naoki_0531
1
150
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
230
Featured
See All Featured
Fireside Chat
paigeccino
37
3.6k
Facilitating Awesome Meetings
lara
54
6.5k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Testing 201, or: Great Expectations
jmmastey
44
7.6k
Balancing Empowerment & Direction
lara
1
510
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
KATA
mclloyd
31
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
© 2024 Wantedly, Inc. 会社訪問アプリ「Wantedly Visit」におけ る新規ユーザーの行動量に基づいた推薦 方策の選択 DEIM 2024
技術報告 [T3-C-8-05] Mar. 2024 - 林 悠大 (ウォンテッドリー株式会社)
© 2024 Wantedly, Inc. INTERNAL ONLY Agenda 1. 企業紹介 ◦
会社とプロダクトの紹介 ◦ プロダクトにおけるデータサイエンスの活用事例 ◦ アカデミアにおける活動 2. 新規ユーザーへの推薦の難しさと重要性 ◦ コールドスタート問題に対処する重要性 ◦ Wantedly Visitにおける「ユーザーが選択した興味」による推薦 3. 新規ユーザーに提供する推薦を行動量によって変える取り組み ◦ コンテンツベース推薦と行動ベース推薦の切り替えタイミングを ユーザーごとに最適化 ◦ オンラインテストの結果と考察
© 2024 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 経歴 •
2022年3月:東京大学大学院工学系研究科でPh.D 取得 • 2022年4月:ウォンテッドリー株式会社にデータ サイエンティストとして新卒入社。推薦システム の開発に従事 趣味 • 音楽を聴くこと • ウイスキー
© 2023 Wantedly, Inc. 究極の適材適所により、 シゴトでココロオドルひとをふやす © 2024 Wantedly, Inc.
私たちのミッション
© 2024 Wantedly, Inc. INTERNAL ONLY • 個人と企業がフラットな目線で出会えることで、 より魅力的な場所を見つけることが可能に 会社に遊びに行こう
ミッションや価値観への共感でマッチング • 会社の Why と What が伝えられる場所 • 人と会社を「想い」でマッチング 「話を聞きに行く」体験 会社訪問アプリ「Wantedly Visit」
© 2024 Wantedly, Inc. INTERNAL ONLY 事例紹介:推薦システムの開発・改善
© 2024 Wantedly, Inc. INTERNAL ONLY アカデミアにおける活動 RecSys2023への参加と論文読み会の協賛 国内学会のスポンサー https://event.dbsj.org/
deim2023 DEIM2023 JSAI2023 https://www.ai-gakkai.or.jp/jsai2023/sponsor/
© 2024 Wantedly, Inc. INTERNAL ONLY Agenda 1. 企業紹介 ◦
会社とプロダクトの紹介 ◦ プロダクトにおけるデータサイエンスの活用事例 ◦ アカデミアにおける活動 2. 新規ユーザーへの推薦の難しさと重要性 ◦ コールドスタート問題に対処する重要性 ◦ Wantedly Visitにおける「ユーザーが選択した興味」による推薦 3. 新規ユーザーに提供する推薦を行動量によって変える取り組み ◦ コンテンツベース推薦と行動ベース推薦の切り替えタイミングを ユーザーごとに最適化 ◦ オンラインテストの結果と考察
© 2024 Wantedly, Inc. INTERNAL ONLY 新規ユーザーに対する推薦の重要性と難しさ 新規ユーザー • インタラクション情報が無いので、行動
情報を利用した効果的な推薦が難しい → コールドスタート問題 • ユーザーの属性情報などを活用したコン テンツベース推薦が行われることが多い 新規ユーザーにはサービスの利用意欲が高いユーザーが多く、 利用初期に良い体験をすることが長期的視点から非常に重要
© 2024 Wantedly, Inc. INTERNAL ONLY コンテンツベース推薦と行動ベース推薦 適切なタイミングでコンテンツから行動ベースの推薦へと切り替える ことでユーザーの体験を向上させられる可能性 コンテンツベース推薦
行動ベース推薦 行動情報がなくてもユーザー の嗜好を大まかに捉えられる ユーザーの細かい嗜好の 違いを捉えるのが苦手 ユーザーの細かい嗜好の 違いを捉えられる 行動情報が少ないと良い 推薦を提供できない メリット デメリット
© 2024 Wantedly, Inc. INTERNAL ONLY Wantedly Visitにおけるコンテンツベース推薦 • オンボーディング時に興味のある
ワードを選択してもらう • 選択した興味に応じて募集を推薦 (コンテンツベース推薦) 登録直後から関心のある募集が たくさん表示される体験
© 2024 Wantedly, Inc. INTERNAL ONLY これまでの行動ベース推薦への切り替え手法 ユーザー登録 1日目 2日目
3日目 コンテンツ ベース 行動ベース • ユーザー登録からの経過日数に応じて 行動ベースの推薦へと移行 • 新規ユーザーの行動量はおおよそ均質 だという仮定 ユーザーごとの行動傾向の違いは十分 に考慮できていなかった 新規ユーザーの見る募集のランキング中の方策の比率
© 2024 Wantedly, Inc. INTERNAL ONLY これまでの行動ベース推薦への切り替え手法 たくさん募集を見て回る人 ゆっくり募集を見る人 なかなか自分の嗜好を理解してくれ
ないので応募せずに離脱する たまたま反応した募集に引っ張られて 興味のない募集ばかりが出るように なった 意欲が高いユーザーに意欲の高いうちに良い推薦が出せない ことは大きな損失 どのユーザーでも一定のペースで置き換えが進むと...
© 2024 Wantedly, Inc. INTERNAL ONLY Agenda 1. 企業紹介 ◦
会社とプロダクトの紹介 ◦ プロダクトにおけるデータサイエンスの活用事例 ◦ アカデミアにおける活動 2. 新規ユーザーへの推薦の難しさと重要性 ◦ コールドスタート問題に対処する重要性 ◦ Wantedly Visitにおける「ユーザーが選択した興味」による推薦 3. 新規ユーザーに提供する推薦を行動量によって変える取り組み ◦ コンテンツベース推薦と行動ベース推薦の切り替えタイミングを ユーザーごとに最適化 ◦ オンラインテストの結果と考察
© 2024 Wantedly, Inc. INTERNAL ONLY どのようにして「ユーザーごとの切り替え最適化」を行うか 意欲が高い新規ユーザーに「早く」良い推薦を届けるという 観点から、ルールベースでの切り替えをする判断 ルールベース
バンディット • ユーザーの反応を受けながら 方策を調整可能 • フィードバックにノイズが含 まれる場合に収束が遅くなる • 収束速度をある程度制御で きる • ユーザーの反応を方策選択 の調整に十分活用できない
© 2024 Wantedly, Inc. INTERNAL ONLY ログ蓄積による行動ベース推薦の性能変化の事前実験 ユーザーを行動量によってセグメントわけ 評価指標:nDCG •
コンテンツベースランキングはユー ザーの行動量にほとんど依存しない • 行動ベースランキングはユーザーの 行動量が一定値を超えたときに興味 によるランキングの性能を上回る 閾値前後で出す方策を変化させることで よりよい切り替えが実現できると期待
© 2024 Wantedly, Inc. INTERNAL ONLY オンラインテストによる検証 新規ユーザーを対象としてA/Bテストを実施 • control
◦ 登録からの経過日数に応じ てコンテンツベースの割合 を減らしていく • treatment ◦ 行動量が一定値を超えたと きにコンテンツベース推薦 を出さなくする
© 2024 Wantedly, Inc. INTERNAL ONLY オンラインテストによる検証 新規ユーザーの応募行動を活発化させる効果が観測された 意欲の高いユーザーの体験を向上させることができたか? •
活発に行動するユーザーが最初に応募するまでの日数を短縮 → 自分の行動に即した募集がより早く表示されるようになることで、応募し たいと思う募集に出会えるまでの期間を短縮できたと予想 • 登録後に長期的に利用するユーザーが増加 → 登録初期に良い体験をすることができたことで長期的なサービス利用意欲 が高まったと予測
© 2024 Wantedly, Inc. INTERNAL ONLY まとめ • 課題:意欲が高い新規ユーザーに対して、意欲が高いうちに十分良い推薦 を届けられていない
• 対処法:新規ユーザーの行動量に応じて提供する推薦モデルの比率を調整 • 結果:ユーザーの応募行動を促進 • 考察:意欲的なユーザーに早く良い募集を推薦することで体験が向上し、 その後の継続的なサービス利用につながった
© 2024 Wantedly, Inc. INTERNAL ONLY We are hiring!