Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報マイニング特論 輪講資料「詳細釣り合い条件」
Search
Yumeto Inaoka
December 08, 2018
Technology
0
230
情報マイニング特論 輪講資料「詳細釣り合い条件」
2018年12月7日の情報マイニング特論で発表。
Yumeto Inaoka
December 08, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Technology
See All in Technology
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
130
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
700
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
310
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
130
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2k
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
150
ChatGPTで論⽂は読めるのか
spatial_ai_network
9
28k
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
750
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
5分で知るMicrosoft Ignite
taiponrock
PRO
0
360
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
180
Ruby で作る大規模イベントネットワーク構築・運用支援システム TTDB
taketo1113
1
300
Featured
See All Featured
Navigating Team Friction
lara
191
16k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Agile that works and the tools we love
rasmusluckow
331
21k
The Cult of Friendly URLs
andyhume
79
6.7k
Producing Creativity
orderedlist
PRO
348
40k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Bash Introduction
62gerente
615
210k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
4.4 詳細釣り合い条件 稲岡 夢人
前回は・・・ 遷移核から定常分布を求めた 実際は・・・ 事後分布に従う乱数が欲しい → 事後分布が定常分布になるような遷移核を導く 2
マルコフ連鎖モンテカルロ法 (Markov chain MonteCarlo methods; MCMC) サンプリングしたい分布が定常分布となるような マルコフ連鎖を構成する方法 (遷移核を見つける) サンプリングしたい分布を目標分布という
今回の目標分布は事後分布(既知) 3
遷移核の導出において • 遷移核によっては定常分布をもたない • 今回は定常分布を持つような遷移核が欲しい → どのような条件下だと定常分布に収束するか 4
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 標本空間の全ての事象の組i, jに関して 式(4.13) が満たされるときマルコフ連鎖は定常分布に収束 ネクタイ問題はこれを満たす 式(4.14) ~ (4.16) 5
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 ◦ 詳細釣り合い条件を満たすように遷移核を 選べば必ず定常分布に収束する × 定常分布に収束するような遷移核は必ず 詳細釣り合い条件を満たす 6
詳細釣り合い条件の意味 両辺を添え字iに関して和を取る 左辺シグマ内の総和は1 7
詳細釣り合い条件の意味 式(4.11)と見かけ上は同じだが、式(4.11)は 遷移の途中であっても成り立つ恒等式 上式は目標分布 と が同一の分布 である制約の下で遷移核 に成り立つ条件式 8
連続型確率変数での詳細釣り合い条件 離散型の場合は全ての事象の組i, jで成立を確認 連続型の場合は任意の2点θ, θ’で成立を確認する 必要がある 9
詳細釣り合い条件のイメージ f(θ’) : f(θ) = 1:a とすると f(θ|θ’) : f(θ’|θ)=a:1 10 0
5 0.5 θ θ’ f(θ’|θ) f(θ|θ’) f()
詳細釣り合い条件 結果としてθに移動してくる確率密度f(θ)は、 11 発射地点θ’からθに飛んでくる確率密度の あらゆる発射地点に関する平均確率密度が θの確率密度となる → f(θ)の大きさに比例してθに飛んでくる
詳細釣り合い条件 初期状態を中心部から遠くにとっても、 乱数列は中心部へ急速に引き寄せられる 12 0 50 0.5 θ θ’ f(θ’|θ)
f(θ|θ’) f()