Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Confidence Modeling for Neural Semantic P...
Search
Yumeto Inaoka
October 24, 2018
Research
3
200
文献紹介: Confidence Modeling for Neural Semantic Parsing
2018/10/24の文献紹介で発表
Yumeto Inaoka
October 24, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
190
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Research
See All in Research
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
140
Practical The One Person Framework
asonas
1
2.1k
Optimal and Diffusion Transports in Machine Learning
gpeyre
0
1.1k
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
410
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
410
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
290
知識強化言語モデルLUKE @ LUKEミートアップ
ikuyamada
0
200
国際会議ACL2024参加報告
chemical_tree
1
430
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1.1k
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
2
150
Neural Fieldの紹介
nnchiba
2
660
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Bash Introduction
62gerente
611
210k
How STYLIGHT went responsive
nonsquared
98
5.4k
Practical Orchestrator
shlominoach
186
10k
Statistics for Hackers
jakevdp
797
220k
Into the Great Unknown - MozCon
thekraken
35
1.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
A Tale of Four Properties
chriscoyier
158
23k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Site-Speed That Sticks
csswizardry
4
380
Optimizing for Happiness
mojombo
376
70k
Transcript
Confidence Modeling for Neural Semantic Parsing จݙհɹ Ԭٕज़Պֶେֶɹࣗવݴޠॲཧݚڀࣨ ҴԬɹເਓ
Literature Confidence Modeling for Neural Semantic Parsing Li Dong† and
Chris Quirk‡ and Mirella Lapata† †School of Informatics, University of Edinburgh ‡Microsoft Research, Redmond Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 743–753, 2018. !2
Abstract • Neural Semantic Parsing (seq2seq) ʹ͓͚Δ֬৴ϞσϦϯά • ೖྗͷͲ͕͜ෆ͔֬͞ͷཁҼʹͳ͍ͬͯΔ͔Λࣝผ •
ࣄޙ֬ɺΞςϯγϣϯʹґଘ͢Δख๏ΑΓ༏ल !3
Introduction • Neural Semantic ParsingظͰ͖Δ݁ՌΛग़͢ҰํͰ ग़ྗͷݪҼ͕ղऍͮ͠Β͍ϒϥοΫϘοΫεͱͯ͠ಈ࡞ • Ϟσϧͷ༧ଌʹର͢Δ֬৴ͷਪఆʹΑͬͯ༗ҙٛͳ ϑΟʔυόοΫ͕ՄೳʹͳΔͷͰͳ͍͔ •
֬৴ͷείΞϦϯάख๏ࣄޙ֬ p(y|x) ͕Α͘༻͞ΕΔ → ઢܗϞσϧͰ༗ޮ͕ͩχϡʔϥϧϞσϧͰྑ͘ͳ͍ !4
Neural Semantic Parsing • In: Natural Language Out: Logical form
• Seq2seq with LSTM • Attention mechanism • Maximize the likelihood • Beam Search !5 !5
Confidence Estimation • ೖྗqͱ༧ଌͨ͠ҙຯදݱa͔Β֬৴s(q, a) ∈ (0, 1)Λ༧ଌ • ֬৴ͷஅʹʮԿΛΒͳ͍͔ʯΛਪఆ͢Δඞཁ͕͋Δ
• Ϟσϧͷෆ͔֬͞ɺσʔλͷෆ͔֬͞ɺೖྗͷෆ͔֬͞Λجʹ ࡞ΒΕΔࢦඪ͔Β֬৴ΛճؼϞσϧʹΑͬͯٻΊΔ !6
Model Uncertainty • ϞσϧͷύϥϝʔλߏʹΑΔෆ͔֬͞Ͱ֬৴͕Լ ← ྫ͑܇࿅σʔλʹؚ·ΕΔϊΠζ֬తֶशΞϧΰϦζϜ • Dropout Perturbation, Gaussian
Noise, Posterior Probability͔Β ࢦඪΛ࡞͠ɺෆ͔֬͞Λ༧ଌ !7
Dropout Perturbation • DropoutΛςετ࣌ʹ༻ (ਤதͷi, ii, iii, ivͷՕॴ) • จϨϕϧͰͷࢦඪɿ
• τʔΫϯϨϕϧͰͷࢦඪɿ • ɹɹઁಈͤ͞Δύϥϝʔλɹ݁ՌΛूΊͯࢄΛܭࢉ !8
Gaussian Noise • Gaussian NoiseΛϕΫτϧՃ͑ͯDropoutͱಉ༷ʹࢄΛܭࢉ ← DropoutϕϧψʔΠɺ͜ΕΨεʹै͏ϊΠζ • ϊΠζͷՃ͑ํҎԼͷ2ͭ (vݩͷϕΫτϧ,
gGaussian Noise) !9
Posterior Probability • ࣄޙ֬ p(a | q)ΛจϨϕϧͰͷࢦඪʹ༻ • τʔΫϯϨϕϧͰҎԼͷ2ͭΛࢦඪʹ༻ •
ɹɹɹɹɹɹɹɹɹɹɹɹɿ࠷ෆ͔֬ͳ୯ޠʹண • ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɿτʔΫϯຖͷperplexity !10
Data Uncertainty • ܇࿅σʔλͷΧόϨοδෆ͔֬͞ʹӨڹΛ༩͑Δ • ܇࿅σʔλͰݴޠϞσϧΛֶशͤ͞ɺೖྗͷݴޠϞσϧ֬Λ ࢦඪʹ༻͍Δ • ೖྗͷະޠτʔΫϯΛࢦඪʹ༻͍Δ !11
Input Uncertainty • Ϟσϧ͕ᘳͰೖྗ͕ᐆດͩͱෆ͔֬͞ൃੜ͢Δ (e.g. 9 o’clock -> flight_time(9am) or
flight_time(9pm) ) • ্Ґީิͷ֬ͷࢄΛ༻͍Δ • ΤϯτϩϐʔΛ༻͍Δ ← a’αϯϓϦϯάۙࣅ !12
Confidence Storing • ͜ΕΒͷ༷ʑͳࢦඪΛ༻͍ͯ֬৴ͷείΞϦϯάΛߦ͏ • ޯϒʔεςΟϯάϞσϧʹ֤ࢦඪΛ༩ֶ͑ͯशͤ͞Δ ग़ྗ͕0ʙ1ʹͳΔΑ͏ϩδεςΟοΫؔͰϥοϓ • ޯϒʔεςΟϯάϞσϧҎԼͷղઆهࣄ͕͔Γ͍͢ (ʮGradient
Boosting ͱ XGBoostʯ: ɹ https://zaburo-ch.github.io/post/xgboost/ ) !13
Uncertainty Interpretation • Ͳͷೖྗ͕ෆ͔֬͞ʹ࡞༻͍ͯ͠Δ͔Λಛఆ → ͦͷೖྗΛಛผͳέʔεͱͯ͠ѻ͏͕ग़དྷΔ • ༧ଌ͔ΒೖྗτʔΫϯؒ·ͰΛٯൖ → ֤τʔΫϯͷෆ͔֬͞ͷد༩͕Θ͔Δ
!14
Experiments (Datasets) • IFTTT σʔληοτ (train-dev-test : 77,495 - 5,171
- 4,294) • DJANGO σʔληοτ (train-dev-test : 16,000 - 1,000 - 1,805) !15
Experiments (Settings) • Dropout Perturbation Dropout rate0.1ɺ30ճ࣮ߦͯ͠ࢄΛܭࢉ • Gaussian Noise
ඪ४ภࠩΛ0.05ʹઃఆ • Probability of Input ݴޠϞσϧͱͯ͠KenLMΛ༻ • Input Uncertainty 10-best ͷީิ͔ΒࢄΛܭࢉ !16
Experiments (Results) • Model Uncertainty͕࠷ޮՌత • Data UncertaintyӨڹ͕খ͍͞ → In-domainͰ͋ΔͨΊ
!17
Experiments (Results) !18
Experiments (Results) • Model Uncertaintyͷ ࢦඪ͕ॏཁ • ಛʹIFTTT#UNKͱ Var͕ॏཁ !19
Experiments (Results) !20
Experiments (Results) • ϊΠζΛՃ͑ͨτʔΫϯྻͱ ٯൖͰಘͨτʔΫϯྻͷ ΦʔόʔϥοϓͰධՁ • Attentionͱൺֱͯ͠ߴ͍ • K=4ʹ͓͍ͯ80%͕Ұக
!21
Experiments (Results) !22
Conclusions • Neural Semantic ParsingͷͨΊͷ֬৴ਪఆϞσϧΛఏࣔ • ෆ͔֬͞ΛೖྗτʔΫϯϨϕϧͰղऍ͢Δํ๏Λఏࣔ • IFTTT, DJANGOσʔληοτʹ͓͍ͯ༗ޮੑΛ֬ೝ
• ఏҊϞσϧSeq2seqΛ࠾༻͢Δ༷ʑͳλεΫͰద༻Մೳ • Neural Semantic ParsingͷActive Learningʹ͓͍ͯར༻Ͱ͖Δ !23