Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Learning To Split and Rephrase From Wikip...
Search
Yumeto Inaoka
November 21, 2018
Research
0
170
文献紹介: Learning To Split and Rephrase From Wikipedia Edit History
2018/11/21の文献紹介で発表
Yumeto Inaoka
November 21, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
140
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
180
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
130
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
110
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
290
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
190
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
190
Other Decks in Research
See All in Research
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
380
TransformerによるBEV Perception
hf149
1
620
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
330
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
680
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
130
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
160
Weekly AI Agents News!
masatoto
30
44k
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
460
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
160
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
400
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.2k
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
58
23k
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
244
12k
It's Worth the Effort
3n
183
28k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Docker and Python
trallard
43
3.2k
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
Designing for humans not robots
tammielis
250
25k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
Done Done
chrislema
182
16k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Optimising Largest Contentful Paint
csswizardry
33
3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Building an army of robots
kneath
302
44k
Transcript
Learning To Split and Rephrase From Wikipedia Edit History 文献紹介
( 2018/11/21 ) 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature • Learning To Split and Rephrase From Wikipedia Edit
History • Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, Dipanjan Das (Google AI Language) • Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2
Split and Rephrase 複雑な文章を複数の平易な文章に書き換える操作 3 removing adding
Related Works Split and Rephrase [Narayan et al. 2017] •
新しい平易化タスク“Split and Rephrase”を提案 • ベンチマーク WebSplit を作成 • 既存のモデルを適用してタスクの難易度を調査 4
Related Works Split and Rephrase: Better Evaluation and a Stronger
Baseline [Aharoni, Goldberg. 2018] • WebSplit内のデータの重複を削減 • Copy mechanismを用いても性能が不十分 5
Contributions • Wikipediaの編集履歴 (Wikipedia Edits)から split-and-rephraseの書き換えを抽出する手法 • 英語のWikiSplitデータセットの公開 • WebSplitと比較してBLEUが倍増
(30.5 → 62.4) 6
WebSplit • 文の分割と書き換えを評価する基準を提供 • サイズが小さく反復性がある → 適用範囲が制限される • モデル評価のベンチマークには使えるが 訓練には使えない
→ WikiSplitコーパスを作成 7
Mining Wikipedia Edits • 記事からマークアップを除去 • splitta [Gillick. 2009] で文を分割
• 時間的に隣接するスナップショットを比較し 文分割を含む編集を特定 • 分割候補から高品質の分割のみを抽出 8
Mining Wikipedia Edits • Full sentence: C Candidate split: S =
(S 1 , S 2 ) • CとS 1 の接頭辞、CとS 2 の接尾辞が同じtri-gram • S 1 とS 2 の接尾辞が異なるtri-gram • BLEU(C, S 1 )とBLEU(C, S 2 )がδより小さい 9
Mining Wikipedia Edits 例: C 0 = I am a
cat who has no name as yet. S 1 = I am a cat. S 2 = I have no name as yet. BLEU(C, S 1 ) > δ < BLEU(C, S 2 ) 10 removing adding
Corpus Statistics and Quality コーパスサイズと 品質はトレードオフ ランダムな100文を 使ってδを選定 δ=0.2が最適と判断 11
Corpus Statistics and Quality • Correct/Unsupp./Miss. = 168/35/4 (δ =
0.2) → 68%は完璧で、32%はノイズを含む • このデータを訓練データとして使用 • 評価においてノイズやバイアスを含む不完全な 信号であることを受け入れる 12
Comparison to WebSplit 13
Comparison to WebSplit • WikiSplitの方がより多様でスパース → より難しいタスクとなる • WikiSplitは一様に1度の分割のみを行う →
より簡単なタスクとなる 14
Comparison to WebSplit • WikiSplitはヒューリスティックな手法による 抽出を用いて構築されている • WebSplitは複数のReferenceを提供 → WebSplitの方が評価に適したデータセット
15
Experiments • WebSplitのみ、WikiSplitのみ、両方で実験 • Text-to-textとみなし、BLEU, S-BLEUで評価 • モデルは [Aharoni, Goldberg.
2018] で最高の 結果を出した“Copy512”を使用 16
Results • WebSplitはドメイン外で 非常に低い • WikiSplitはドメイン外で も高い • 両方を使用するとさらに 向上
17 SOURCE : 入力をそのまま出力 SPLITHALF : 半分に分割し、ピリオドを追加
Results 18
Results BOTHにおいて学習にない3文の出力ができている 19
Results BOTHにおいて正確な出力が95%であることを 人手評価によって確認 20
Conclusion and Outlook • ノイズを含む大規模で多様なデータが split-and-rephraseにおいて好影響 • 今後、他のデータ源の発見により改善が できることを示唆 •
理想的には、自然な文による評価データや タスクに適した評価指標が必要 21