Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【NoMapsTECH 2025】AI Edge Computing Workshop
Search
ITO Akihiro
September 13, 2025
Technology
0
620
【NoMapsTECH 2025】AI Edge Computing Workshop
2025年のNoMapsTechで使用したスライド。
NVIDIAが開発した小型AIコンピュータ「Jetson Orin Nano」のハンズオン。最先端のエッジコンピューティングを体験しましょう!
ITO Akihiro
September 13, 2025
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
kintone + ローカルLLM = ?
akit37
0
110
【NoMapsTECH 2025】AI Tech Community Talk
akit37
0
290
エンジニア目線でのテスラ
akit37
0
65
「重鎮問題」について(軽めに)
akit37
0
77
Software + Hardware = Fun++
akit37
0
44
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
34
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
33
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
37
始まりは2017年のG検定。/20221026_AITable
akit37
0
34
Other Decks in Technology
See All in Technology
React 19時代のコンポーネント設計ベストプラクティス
uhyo
16
5.5k
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
660
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
94k
Kubernetes環境周りの責任範囲をいい機会なので考える / Taking the Opportunity to Clarify Kubernetes Responsibilities
kohbis
1
100
旅先で iPad + Neovim で iOS 開発・執筆した話
zozotech
PRO
0
370
Scrum Fest Morioka 2026
kawaguti
PRO
0
290
【Developers Summit 2026】Memory Is All You Need:コンテキストの「最適化」から「継続性」へ ~RAGを進化させるメモリエンジニアリングの最前線~
shisyu_gaku
3
290
AIエージェントのメモリについて
shibuiwilliam
0
300
意外と知ってそうでしらない、Reserved Instances の世界
mappie_kochi
0
160
AIが実装する時代、人間は仕様と検証を設計する
gotalab555
6
1k
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
1
3k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
150
Featured
See All Featured
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
930
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.8k
Navigating Team Friction
lara
192
16k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Building the Perfect Custom Keyboard
takai
2
700
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
110
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Transcript
AI Edge Computing Workshop [NVIDIA Jetson Orin Nanoを使って生成AIを動かしてみよう!] NoMaps2025@Sapporo RUSHTECH
/ ITO Akihiro
自己紹介 ・80年代後半 証券オンラインシステム/汎用機/アセンブラ ・90年代 CASEツール、会計システム、業務システム /HP-UX, NeXTSTEP, Linux /C, C++,
Objective-C, Visual-C++, PHP ・2000/2010年代 デジタルアセット管理システム、業務支援・改善システム、 社内ITシステム管理、社内DX /Linux, Windows, macos /PHP, Google Workspace, kintone ・2020年代 AI導入開発コンサルティング、業務改善システム /Ubuntu /Python, Google Workspace, kintone ・2025年〜 AI活用支援、DX支援、事業開発等
Today’s GOAL.
手元で推論AIを 動かす! NVIDIA Jetson Orin Nanoを使って、 大規模言語モデル(LLM)を動かしてみよう。 [ LLM:Large Language
Model ] インターネットに繋がっていなくても OK!
なぜ?なんのために手元で?
なにがうれしい? セキュリティ上の心配が少ない。 データがインターネット上に流れず、クラウドに保 管もされないので、潜在的なセキュリティリスクが 低い。漏洩の心配もない。 遅延がない。 インターネット回線を経由する通信がないので、応 答が速い。 使い放題。 使用回数の制限もなく、利用回数による課金もな
いので、コストを気にする必要がない。
でもなにかと難しい。 マシン性能 AIモデルを展開できるだけのメモリと、高速に計算 するためのCPU/GPUが必要。 AI動作環境の構築 動作環境の構築には知識と手間がかかる。使うモ デルによって環境を複数用意する必要がある場合 も。 置き場所と電気代 サーバは大きいし、音もうるさいし、電気もたくさん
必要。
どこで使われている?
例えば、工場の中。 インターネットに繋がっていない。 内部の情報を守るため外部ネットワークとは一切 接続できない。 大きなコンピュータは置けない。 製造用の機械が整然と並んでおり、サーバラック のような大きな面積や電源を確保できない。 製造ラインに組み込みたい。 製造ラインに直接組み込み、製造途中で AIを活用
したい。とくに品質検査用途や、作業の自動化の ため。
手軽なエッジAI
NVIDIA Jetsonシリーズ ARMチップとGPUを搭載した小型コン ピュータ群。 価格帯:$100〜$2,000 くらい。 ※現場では、安価なRaspberryPi 4/5もよく使わ れるが、処理能力はJetsonの方が断然高い。
Jetson Orin Nano 現行Jetsonシリーズでの最小モデル。 ・1024基のCUDAコア ・NVIDIA AmpereアーキテクチャGPU ・6コアのARM CPU ・8GBのユニファイドメモリ
※実売価格:約5万円(2025年7月)
でも環境構築が……
Jetson AI Lab がある! NVIDIAが用意した環境を使って、超簡 単に高度なAIを動かせる! https://www.jetson-ai-lab.com/
Stable Diffusionをインストールするときの例。 ・Jetson AI Lab ・Linuxへの一般的なインストール手順
動かしてみよう!
だいたいの手順 • Jetson Orin Nanoにログインする。 • Jetson AI Labにアクセスする。 •
デスクトップUIを止める。 • Text Generationのコンテナをダウンロードする。 • 文章生成を動かしてみる。 • Image Generationのコンテナをダウンロードする。 • 画像生成を動かしてみる。 https://zenn.dev/connectome/articles/c63f9aecb28f32
ところが! JetPackが最近6.2にアップデートしたので適用したところ、今公開されているデモコンテ ンツが動かない! これも、AI環境構築によくある(はまる)ことではあるのですが。 → この点について、NVIDIAに直接と依頼してあります。
また、環境設定からやると半日かかるので……。 ## snap (for Chromium) $ sudo snap list —all
$ cd ~/Downloads $ sudo snap download snapd --revision=24724 $ sudo snap ack snapd_24724.assert $ sudo snap install snapd_24724.snap $ sudo snap refresh --hold snapd ## 日本語 Setting -> Region & Language -> Manage Installed Language $ sudo apt update $ sudo apt upgrade $ sudo apt install fcitx-mozc $ sudo reboot ## swap拡張 $ sudo fallocate -l 4G /swapfile $ sudo chmod 600 /swapfile $ sudo mkswap /swapfile $ sudo vi /etc/fstab 最後に一行追加 /swapfile none swap sw 0 0 $ sudo reboot $ free -h $ sudo apt update $ sudo apt upgrade ## jetson-containers $ git clone https://github.com/dusty-nv/jetson-containers $ bash jetson-containers/install.sh ※環境構築できた microSDカードのクローンコピーを用意しています。
今回は最新の”Agent Studio”を体験します。 ▪まずは英語の LLMを動かします。 ## Agent Studio https://www.jetson-ai-lab.com/agent_studio.html ▪次に日本語 LLM
“Tanuki-8B” を動かします。 ## Jetson orin nano上のAgent StudioでTanuki-8Bを試す https://note.com/hamachi_jp/n/n645afc91a3ab weblab-GENIAC/Tanuki-8B-dpo-v1.0 ## CLIモードにして(GUIを止めて)メモリに余裕を持たせる $ sudo systemctl set-default multi-user.target ## GUIに戻す時 $ sudo systemctl set-default graphical.target jetson-containers run --env HUGGINGFACE_TOKEN=hf_xyz123abc456 \ $(autotag nano_llm) \ python3 -m nano_llm.studio https://IP_ADDRESS:8050
None
JetBot
JetRacer
None
参考サイト • Jetson Orin Nano Developer Kit Getting Started Guide
https://developer.nvidia.com/embedded/learn/get-started-jetson-orin-nano-dev kit • Jetson Orin Nano Superが到着・初回セットアップ https://bone.jp/articles/2025/250122_JetsonOrinNanoSuper_2_Received • Jetson orin nano上のAgent StudioでTanuki-8Bを試す https://note.com/hamachi_jp/n/n645afc91a3ab • LM Studio https://lmstudio.ai/