Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
97
UKARA 1.0 Challenge Track 1
aliakbars
1
91
Introduction to Artificial Intelligence
aliakbars
2
370
Feature Selection & Extraction
aliakbars
0
160
Introduction to Natural Language Processing
aliakbars
0
71
Machine Learning for Healthcare
aliakbars
0
65
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
100
How Technology Can Change Food Logistics
aliakbars
0
110
Data Science for Business
aliakbars
2
130
Other Decks in Education
See All in Education
2025年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2025. 6. 26)
akiraasano
PRO
0
150
新卒研修に仕掛ける 学びのサイクル / Implementing Learning Cycles in New Graduate Training
takashi_toyosaki
1
210
みんなのコードD&I推進レポート2025 テクノロジー分野のジェンダーギャップとその取り組みについて
codeforeveryone
0
160
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
signer
PRO
0
2.1k
『会社を知ってもらう』から『安心して活躍してもらう』までの プロセスとフロー
sasakendayo
0
250
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
200
生態系ウォーズ - ルールブック
yui_itoshima
1
250
令和政経義塾第2期説明会
nxji
0
160
2025年度春学期 統計学 第10回 分布の推測とは ー 標本調査,度数分布と確率分布 (2025. 6. 12)
akiraasano
PRO
0
210
万博マニアックマップを支えるオープンデータとその裏側
barsaka2
0
760
Open Source Summit Japan 2025のボランティアをしませんか
kujiraitakahiro
0
810
EVOLUCIÓN DE LAS NEUROCIENCIAS EN LOS CONTEXTOS ORGANIZACIONALES
jvpcubias
0
100
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.4k
RailsConf 2023
tenderlove
30
1.2k
BBQ
matthewcrist
89
9.8k
How to Ace a Technical Interview
jacobian
279
23k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Building Applications with DynamoDB
mza
96
6.6k
Docker and Python
trallard
45
3.5k
Six Lessons from altMBA
skipperchong
28
4k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you