Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
97
UKARA 1.0 Challenge Track 1
aliakbars
1
89
Introduction to Artificial Intelligence
aliakbars
2
360
Feature Selection & Extraction
aliakbars
0
150
Introduction to Natural Language Processing
aliakbars
0
71
Machine Learning for Healthcare
aliakbars
0
65
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
97
How Technology Can Change Food Logistics
aliakbars
0
100
Data Science for Business
aliakbars
2
130
Other Decks in Education
See All in Education
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
190
SkimaTalk Introduction for Students
skimatalk
0
390
Avoin jakaminen ja Creative Commons -lisenssit
matleenalaakso
0
1.9k
予習動画
takenawa
0
7.3k
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
160
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
110
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
新卒交流ワークショップ
pokotyamu
0
440
生成AI
takenawa
0
6.7k
アウトプット0のエンジニアが半年でアウトプットしまくった話 With JAWS-UG
masakiokuda
2
330
技術文章を書くための執筆技術と実践法(パラグラフライティング)
hisashiishihara
18
6.5k
Implicit and Cross-Device Interaction - Lecture 10 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
1.7k
Featured
See All Featured
Embracing the Ebb and Flow
colly
86
4.7k
Building Applications with DynamoDB
mza
95
6.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Practical Orchestrator
shlominoach
189
11k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Statistics for Hackers
jakevdp
799
220k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you