Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
98
UKARA 1.0 Challenge Track 1
aliakbars
1
91
Introduction to Artificial Intelligence
aliakbars
2
380
Feature Selection & Extraction
aliakbars
0
160
Introduction to Natural Language Processing
aliakbars
0
72
Machine Learning for Healthcare
aliakbars
0
65
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
100
How Technology Can Change Food Logistics
aliakbars
0
120
Data Science for Business
aliakbars
2
130
Other Decks in Education
See All in Education
令和政経義塾第2期説明会
nxji
0
240
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
320
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
110
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
200
【品女100周年企画】Pitch Deck
shinagawajoshigakuin_100th
0
7.2k
日本の情報系社会人院生のリアル -JAIST 修士編-
yurikomium
1
130
Adobe Express
matleenalaakso
1
8k
Test-NUTMEG紹介スライド
mugiiicha
0
230
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
データで見る赤ちゃんの成長
syuchimu
0
300
AI for Learning
fonylew
0
190
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
960
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Practical Orchestrator
shlominoach
190
11k
Building Adaptive Systems
keathley
43
2.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
The Language of Interfaces
destraynor
162
25k
Designing Experiences People Love
moore
142
24k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you