Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
100
UKARA 1.0 Challenge Track 1
aliakbars
1
94
Introduction to Artificial Intelligence
aliakbars
2
390
Feature Selection & Extraction
aliakbars
0
180
Introduction to Natural Language Processing
aliakbars
0
75
Machine Learning for Healthcare
aliakbars
0
69
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
110
How Technology Can Change Food Logistics
aliakbars
0
140
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
PRO
4
17k
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
600
卒論の書き方 / Happy Writing
kaityo256
PRO
50
26k
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
160
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
SJRC 2526
cbtlibrary
0
150
相互コミュニケーションの難しさ
masakiokuda
0
320
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
AIを使って最新研究 について調べて発表しよ う!
mickey_kubo
4
170
Linguaxes de programación
irocho
0
500
Adobe Express
matleenalaakso
1
8.1k
Présentation_2nde_2025.pdf
bernhardsvt
0
380
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Practical Orchestrator
shlominoach
190
11k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Git: the NoSQL Database
bkeepers
PRO
432
66k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you