Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
91
UKARA 1.0 Challenge Track 1
aliakbars
1
79
Introduction to Artificial Intelligence
aliakbars
2
340
Feature Selection & Extraction
aliakbars
0
120
Introduction to Natural Language Processing
aliakbars
0
62
Machine Learning for Healthcare
aliakbars
0
58
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
75
How Technology Can Change Food Logistics
aliakbars
0
81
Data Science for Business
aliakbars
2
110
Other Decks in Education
See All in Education
小学校プログラミング教育、次の5年に向けて 〜つくること・学ぶことの歓びへ〜 /NextGenerationOfProgrammingEducation
kiriem
2
400
Policing the Poor
oripsolob
0
190
Data Representation - Lecture 3 - Information Visualisation (4019538FNR)
signer
PRO
1
2.2k
Analysis and Validation - Lecture 4 - Information Visualisation (4019538FNR)
signer
PRO
0
1.9k
オンラインゆっくり相談室ってなに?
ytapples613
PRO
0
330
zupanijska natjecanja
petarradanovic2
0
180
Архитектура военных и силовых ведомств как основа дальневосточного культурного ландшафта
pnuslide
0
110
SAT Bootcamp and Course
syedmahadd
0
170
Human Perception and Colour Theory - Lecture 2 - Information Visualisation (4019538FNR)
signer
PRO
0
2.3k
(説明資料)オンラインゆっくり相談室
ytapples613
PRO
0
260
Tips for the Presentation - Lecture 2 - Advanced Topics in Big Data (4023256FNR)
signer
PRO
0
220
ワクワク発見資料
akenohoshi
0
190
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Visualization
eitanlees
146
15k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Optimizing for Happiness
mojombo
377
70k
Building Applications with DynamoDB
mza
93
6.3k
Facilitating Awesome Meetings
lara
53
6.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Product Roadmaps are Hard
iamctodd
PRO
51
11k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Documentation Writing (for coders)
carmenintech
69
4.6k
GraphQLとの向き合い方2022年版
quramy
44
14k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you