Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
99
UKARA 1.0 Challenge Track 1
aliakbars
1
92
Introduction to Artificial Intelligence
aliakbars
2
380
Feature Selection & Extraction
aliakbars
0
170
Introduction to Natural Language Processing
aliakbars
0
73
Machine Learning for Healthcare
aliakbars
0
66
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
100
How Technology Can Change Food Logistics
aliakbars
0
120
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.6k
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
280
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
120
ハッカソンを活用したモノづくり教育について
yusk1450
PRO
2
110
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.1k
Adobe Express
matleenalaakso
1
8k
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
170
生態系ウォーズ - ルールブック
yui_itoshima
1
300
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
200
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
110
Sanapilvet opetuksessa
matleenalaakso
0
34k
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
4 Signs Your Business is Dying
shpigford
186
22k
Practical Orchestrator
shlominoach
190
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
KATA
mclloyd
PRO
32
15k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
110
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
620
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you