Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
82
UKARA 1.0 Challenge Track 1
aliakbars
1
76
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
100
Introduction to Natural Language Processing
aliakbars
0
58
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
60
How Technology Can Change Food Logistics
aliakbars
0
58
Data Science for Business
aliakbars
2
92
Other Decks in Education
See All in Education
H5P-työkalut
matleenalaakso
4
36k
1113
cbtlibrary
0
260
不登校予防・再登校支援プログラムを提供するToCo (トーコ) の会社紹介資料 toco.mom
toco3week
0
400
Qualtricsで相互作用実験する「SMARTRIQS」入門編
kscscr
0
320
学習指導要領から職場の学びを考えてみる / Thinking about workplace learning from learning guidelines
aki_moon
1
710
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
820
Chapitre_1_-__L_atmosphère_et_la_vie_-_Partie_2.pdf
bernhardsvt
0
200
アニメに学ぶチームの多様性とコンピテンシー
terahide
0
240
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
1
2.6k
Lisätty todellisuus opetuksessa
matleenalaakso
1
2.3k
Web Application Frameworks - Lecture 4 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
AWS All Certが伝える 新AWS認定試験取得のコツ (Machine Learning Engineer - Associate)
nnydtmg
1
570
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
A Tale of Four Properties
chriscoyier
156
23k
Teambox: Starting and Learning
jrom
133
8.8k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Faster Mobile Websites
deanohume
305
30k
How STYLIGHT went responsive
nonsquared
95
5.2k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you