Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GCPを活用した物流倉庫内の異常検知/Anomaly detection in distri...
Search
ASKUL Engineer
September 12, 2019
Technology
0
3.2k
GCPを活用した物流倉庫内の異常検知/Anomaly detection in distribution warehouse using GCP
Google Cloud NEXT '19 in Tokyo での発表資料です。
https://cloud.withgoogle.com/next/tokyo
ASKUL Engineer
September 12, 2019
Tweet
Share
More Decks by ASKUL Engineer
See All by ASKUL Engineer
EditorConfigで導くコードの「美しさ」
askul
0
530
いまさら聞けないAWS
askul
0
4.9k
CTOが語る、テックカンパニーに向けた未来の話。by アスクル
askul
0
140
チームでリーダブルコードを実現するには?
askul
0
2.7k
ラズパイを使ってスマートリモコンを作ってみた
askul
0
680
Discord Bot はじめの一歩
askul
0
550
10分で「エラスティックリーダーシップ」をアウトプット
askul
0
2.8k
1on1をする上で大切なこと
askul
1
660
JBUG東京#20 〜そこが知りたい!Backlog活用術〜
askul
1
2.7k
Other Decks in Technology
See All in Technology
バクラクにおける可観測性向上の取り組み
yuu26
3
420
AWS re:Inventを徹底的に楽しむためのTips / Tips for thoroughly enjoying AWS re:Invent
yuj1osm
1
570
10分でわかるfreeeのQA
freee
1
3.4k
Aurora_BlueGreenDeploymentsやってみた
tsukasa_ishimaru
1
130
生成AIの強みと弱みを理解して、生成AIがもたらすパワーをプロダクトの価値へ繋げるために実践したこと / advance-ai-generating
cyberagentdevelopers
PRO
1
180
顧客が本当に必要だったもの - パフォーマンス改善編 / Make what is needed
soudai
24
6.8k
ABEMA のコンテンツ制作を最適化!生成 AI x クラウド映像編集システム / abema-ai-editor
cyberagentdevelopers
PRO
1
180
プロダクトチームへのSystem Risk Records導入・運用事例の紹介/Introduction and Case Studies on Implementing and Operating System Risk Records for Product Teams
taddy_919
1
170
使えそうで使われないCloudHSM
maikamibayashi
0
170
とあるユーザー企業におけるリスクベースで考えるセキュリティ業務のお話し
4su_para
3
330
日経電子版におけるリアルタイムレコメンドシステム開発の事例紹介/nikkei-realtime-recommender-system
yng87
1
510
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
4
4.6k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
How to Think Like a Performance Engineer
csswizardry
19
1.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Ruby is Unlike a Banana
tanoku
96
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
3
370
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
290
Designing for humans not robots
tammielis
249
25k
BBQ
matthewcrist
85
9.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Transcript
三井 康行 GCP を活用した物流倉庫内の異常検知 アスクル株式会社 先端テクノロジー 主任研究員
自己紹介
自己紹介 氏名: 三井 康行 略歴: 2003 年 ~ 国内大手電機メーカー研究員 テキスト音声合成等,音声言語処理の基礎研究
2016 年 10 月 ~ 現職 現在のテーマ: 機械学習を用いた最適化 在庫配置,配送,需要予測,etc. その他諸々(予知保全,データ基盤整備,庫内自動化,etc.)
アスクルのご紹介
事業概要 1993 年 事業所向け (BtoB) 通販事業開始 2012 年 個人消費者向け (BtoC)
通販事業開始 (LOHACO)
連結売上高の推移 FY2018 FY2010 FY2000 FY1994 (億円) 3,500 3,000 2,500 2,000
1,500 1,000 500
取扱商品 BtoB BtoC
アスクルの物流基盤
アスクルの物流倉庫における自動化
ASKUL Value Center 関西(AVC関西) 稼働開始:2018 年 延床面積:約 5 万坪
ASKUL Value Center 関西(AVC関西) 稼働開始:2018 年 延床面積:約 5 万坪 コンセプト:人が歩かない物流センター
コンベヤ長:20km 超 自動化比率:約 80%
紹介動画 (イベント時のみ再生)
自動化推進に伴う課題
膨大な量の設備 • 24/7 のメンテナンス ◦ 設備故障がお客様に直結 ◦ サービスレベルの維持 • 設備専門スタッフの現場常駐
◦ 特殊な技能を有する人材確保 ◦ 全国に展開する倉庫 「明日来る」のために
保全コスト • 定期的なメンテナンス ◦ 故障していない箇所も点検/交換対象 ◦ コスト大 予防保全の限界
予知保全への転換 • 故障を事前に予測 ◦ サービスレベルの維持 ◦ 人員配置の適正化 • 適切なタイミングで保全 ◦
保全コストの最適化
GCP を活用した異常検知
バーコードリーダー(BCR) • バーコードを読み取る機械 ◦ 段ボール ◦ コンテナ • 固定式
コンテナ
BCR の用途 • バーコードの持つ情報 ◦ 商品情報:倉庫管理システム(WMS)と連携 • バーコード読取後の処理 ◦ コンベア分岐部での進路決定
◦ 後工程への商品情報伝達
No Read Error • BCR のエラー ◦ バーコードの読取に失敗 • 原因
◦ 高速移動 ◦ バーコードの擦れ ◦ 振動等による BCR 本体のズレ ◦ BCRの異常(設定ミス,故障)
対応 • エラー時の個別対応は困難 ◦ 日常的に読取失敗が発生 ◦ 少数回のエラーは様子見 • 頻発する場合 ◦
点検 ◦ 調整 ◦ 交換 主に事後対応 エラー 故障
事前把握は可能? • 倉庫内でのエラー確認は困難 ◦ 数百台 @ AVC 関西 ◦ エラー表示端末が倉庫内に点在
◦ 全件確認に数時間 • 異常判断が困難 ◦ 何回エラーを出したら異常? ◦ 徐々に/急に増えたら異常? 従来設備では不可能
やりたかったこと 1. No Read Error の時系列変化が見たい! 2. No Read Error
が頻発する BCR をいち早く把握したい!
GCP の活用 データ処理 ログ蓄積 見える化
データフロー 設備稼働 log 確認 点検 処置
BigQuery によるデータ蓄積 • 設備稼働ログを BigQuery に蓄積 ◦ 全 BCR について
▪ 正常通過回数 ▪ No Read Error 回数 • データ可用性を重視
Compute Engine によるデータ処理 1. Data Portal 用データ加工 ◦ BigQuery +
python(pandas + pandas_gbq) にて実装 ◦ 一定期間毎のエラー率,エラー回数累計等を計算 2. Slack を用いたアラート発報 ◦ 1 日1 回アラートを発報 ◦ 対話形式で対応済機器を登録
Slack 画面イメージ(アラート時) 日付 BCR位置 NR率 NR回数 通過回数 20190701 3F_A_GTP_15_S 1.09
20 1809 20190701 4F_C_GTP_03_S 3.56 98 2756 20190701 3F_A_GTP_IN_A1_E 2.53 25 987 2019年7月1日分のBCR No Readアラートをお知らせします。 AVCK_bot アプリ 10:15 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/06/29 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 送信 +
Slack 画面イメージ(対応時) 送信 + 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回
それぞれ閾値を超えています。
Slack 画面イメージ(対応時) 送信 + 4F_C_GTP_03_S 対応完了 @AVCK_bot 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01
対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。
Slack 画面イメージ(対応時) 4F_C_GTP_03_S 対応完了 三井_yasuyuki_mitsui 12:30 送信 + 過去5日間で 「3F_A_GTP_15_S」が3回【
2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 @AVCK_bot
Slack 画面イメージ(対応時) 三井_yasuyuki_mitsui 12:30 @yasuyuki_mitsui: 「4F_C_GTP_03_S」を対応済リストに登録しました。 送信 + アプリ AVCK_bot
12:30 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 4F_C_GTP_03_S 対応完了 @AVCK_bot
Data Portal によるグラフ化 • BigQuery に蓄積されたデータをグラフ化 ◦ No Read Error
率を時系列可視化 ◦ Error 率の推移を確認 • 現場スタッフによる UI 利用 ◦ 対象 BCR のフィルタリング ◦ 表示期間指定
Data Portal によるグラフ化の例
Data Portal によるグラフ化の例 • 直感的で分かりやすい UI • BigQuery と連動してグラフが自動更新
現場からの声 • 「エラーが頻発している BCR をいち早く把握することで重大な 問題に発展する前に対応できるようになった」 • 「エラー多発の要因分析ができるようになった」 • 「他の機器にも展開したい」
おわりに
今後の展開 • 予知保全の実現へ ◦ No Read Error 傾向と現場対応実績との相関分析 ◦ 対応方針を推測
◦ 故障時期の予測 • BCR 以外への設備への展開
GCPとの連携強化(予知保全以外) • スタンドアロンなデータ同士の GCP 上で連携 ◦ 在庫 ◦ 売上 ◦
配送 ◦ 販促 etc. • 未来の姿:全てのデータを GCP 上で処理 ◦ 分析 ◦ 予測(機械学習)