Upgrade to Pro — share decks privately, control downloads, hide ads and more …

初めての研究発表を成功させよう! スライド作成の基本

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

初めての研究発表を成功させよう! スライド作成の基本

Avatar for Ayako Sato

Ayako Sato

June 13, 2024
Tweet

Other Decks in Research

Transcript

  1. はじめに • 研究室配属されたての新入生向け ◦ 玄人の方々には当たり前のレベルかも ◦ 慣れたら自分流にアレンジしてみよう • 注意事項 ◦

    凝ったデザイン・プレゼンの仕方は今回触れない ◦ 分野や研究室で独自のルールがある場合はそれに従った方が良い 2
  2. 1 スライド 1 メッセージ • タイトルは必ず 1 枚ごとに変える ◦ タイトルを見れば主張がひと目でわかるのが理想

    • 情報を詰め込みすぎない ◦ 8 行以内を目安に ◦ 箇条書きは 2 段まで ◦ それ以上になる場合は別スライドに分けよう 13
  3. トップダウンに書こう • 抽象 → 具体 • 結論 → 理由 14

    図は https://www.slideshare.net/slideshow/ss-89422938/89422938 より引用
  4. 図表と一緒に結果の解釈も載せる   20 Cold-Start Data Selection for Better Few-shot Language

    Model Fine-tuning: A Prompt-based Uncertainty Propagation Approach (Yu et al., ACL 2023) 選択サンプルが 集中している 提案手法適用で 多様性が改善
  5. 近接:関連項目をグループ化(1/2) • このままでは対応関係がわかりづらい🙅  24 Aleatoric Uncertainty • データの不確実性 • ノイズや境界値が原因

    Epistemic Uncertainty • モデルの不確実性 • 学習不足が原因 Gawlikowski, J., Tassi, C.R.N., Ali, M. et al. A survey of uncertainty in deep neural networks.
  6. 近接:関連項目をグループ化(2/2) • 関連するもの同士を近くに配置すると見やすい 󰢏  25 Aleatoric Uncertainty • データの不確実性 •

    ノイズや境界値が原因 Epistemic Uncertainty • モデルの不確実性 • 学習不足が原因 Gawlikowski, J., Tassi, C.R.N., Ali, M. et al. A survey of uncertainty in deep neural networks.
  7. 反復:デザインを繰り返す(1/4)   28 手法まとめ 画像劣化 • 視覚ベクトルのユニットをベルヌーイ分布に従い ランダムに選択し、 0でマスク 最終的な損失関数

    • αとβは [0, 1] のハイパーパラメータ • |s| はシーケンスの平均長 Increasing Visual Awareness in Multimodal Neural Machine Translation from an Information Theoretic Perspective (Ji et al., EMNLP 2022)
  8. 反復:デザインを繰り返す(2/4)   29 手法まとめ 画像劣化 • 視覚ベクトルのユニットをベルヌーイ分布に従い ランダムに選択し、 0でマスク 最終的な損失関数

    • αとβは [0, 1] のハイパーパラメータ • |s| はシーケンスの平均長 xをzと近づけて、xの負例集合と 遠ざけるように学習 Increasing Visual Awareness in Multimodal Neural Machine Translation from an Information Theoretic Perspective (Ji et al., EMNLP 2022)
  9. 反復:デザインを繰り返す(3/4)   30 手法まとめ 画像劣化 • 視覚ベクトルのユニットをベルヌーイ分布に従い ランダムに選択し、 0でマスク 最終的な損失関数

    • αとβは [0, 1] のハイパーパラメータ • |s| はシーケンスの平均長 元画像と劣化画像を入力した時の 確率の差を最大化するように学習 Increasing Visual Awareness in Multimodal Neural Machine Translation from an Information Theoretic Perspective (Ji et al., EMNLP 2022)
  10. 反復:デザインを繰り返す(4/4)   31 手法まとめ 画像劣化 • 視覚ベクトルのユニットをベルヌーイ分布に従い ランダムに選択し、 0でマスク 最終的な損失関数

    • αとβは [0, 1] のハイパーパラメータ • |s| はシーケンスの平均長 差分を認識しやすくなる! 元画像と劣化画像を入力した時の 確率の差を最大化するように学習 Increasing Visual Awareness in Multimodal Neural Machine Translation from an Information Theoretic Perspective (Ji et al., EMNLP 2022)
  11. 対比:強調する(2/2) • 色・フォントサイズ・太字で重要箇所を強調󰢏 33 • 話者認識の分類 ◦ 話者識別 : 候補者の中から話者を探索する1対nの推定問題

    ◦ 話者照合 : 2 つの音声が同一話者かを推定する1対1の照合問題 • 話者認識の分類 ◦ 話者識別 : 候補者の中から話者を探索する1対nの推定問題 ◦ 話者照合 : 2 つの音声が同一話者かを推定する1対1の照合問題
  12. 色の選び方 • 3色以内を目安に • 色に意味を持たせる ◦ OK / NG ◦

    提案手法 / 従来手法 • 配色のバリアフリーを意識 ◦ 寒色同士や暖色同士を避ける ◦ 明度に差をつける 34
  13. フォントの選び方 • 本文は 24 pt,図表は 18 pt 以上推奨 ◦ 会場・発表形式(対面/オンライン)に適した大きさにしよう

    • ゴシック体推奨 ◦ 明朝体は見づらい ◦ Windows:メイリオ/游ゴシック ◦ Mac:ヒラギノ角ゴシック ◦ このスライドは Zen Kaku Gothic New 35
  14. チェックリスト④:デザインを見直してみよう ◻ ページ番号ついてる? ◻ 日付は記載されている? ◻ フォントは統一されている? ◻ 本文は 24

    pt,図表は 18 pt 以上? ◻ 行間は詰まっていない? ◻ スクリーンにうつした時に色が消えない? 37
  15. 参考資料 • 研究発表のためのプレゼンテーション技術 • 要点を聞いてもらえるプレゼンを作ろう • 見やすいプレゼン資料の作り方 • メッセージとストーリーのない発表はカスだ アカデ

    ミック・プレゼンテーションのコツ • 伝わるデザイン|研究発表のユニバーサルデザイン • 国際会議論文の読み方・書き方 58