Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Orange Data Miningの紹介 1分で作って評価する機械学習モデル
Search
ぶんちん
May 18, 2023
Technology
0
280
Orange Data Miningの紹介 1分で作って評価する機械学習モデル
2023年5月18日に実施したDS集会@VRChatのLT資料です。
ぶんちん
May 18, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
17
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
43
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
42
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
41
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
73
良書紹介02_Head First データ解析
bunnchinn3
0
34
良書紹介01_生命科学・生物工学のための間違いから学ぶ実践統計解析
bunnchinn3
0
51
OJT指導のはじめかた
bunnchinn3
0
140
自律機械知能の行動観察
bunnchinn3
0
110
Other Decks in Technology
See All in Technology
Engineer Career Talk
lycorp_recruit_jp
0
190
FlutterアプリにおけるSLI/SLOを用いたユーザー体験の可視化と計測基盤構築
ostk0069
0
120
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
3
640
Platform Engineering for Software Developers and Architects
syntasso
1
520
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
140
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
220
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
710
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
190
日経電子版のStoreKit2フルリニューアル
shimastripe
1
150
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.4k
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
A better future with KSS
kneath
238
17k
Automating Front-end Workflow
addyosmani
1366
200k
Six Lessons from altMBA
skipperchong
27
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
It's Worth the Effort
3n
183
27k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Embracing the Ebb and Flow
colly
84
4.5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Transcript
1分で作って評価する機械学習モデル Orange Data Miningの紹介 ぶんちん 2023年5月18日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 VRChat初めて約2か月です 成果獲得を狙うと、 同じことに繰り返しで 飽きた
他者にやらせたら、 成果が増えるのでは 特に非専門家向けのDS教育 2
Orange Data Mining ビジュアルプログラミング的にデータ分析や機械学習モデル作成・評価が可能 公式HPから入手すれば、企業でも無料で使用可能 UIが素晴らしい 初心者は勉強に使おう!
専門家は手抜き・教育に使おう! Anaconda使っている人は 見たことあるのでは? 3 https://orangedatamining.com/
1分で機械学習モデルの作成・評価 データ:Iris 目的変数:Iris(多クラス分類) アルゴリズム:Random Forest 評価方法:交差検定(ランダムサンプリング、5-fold)
評価指標:AUC, F1スコアなど諸々 機械学習の説明については省略します。 4
基本の画面 ここにあるwidgetを選んで ここのエリアに分析フローを作成 ここから1分でやっていきます。 5
データの読み込み Irisデータを指定 6
目的変数と説明変数の選択 説明変数 目的変数 7
アルゴリズムと評価方法の選択 評価 アルゴリズム 今回は両方ともデフォルト値を使うので、 このままでOK “評価”のwidgetをダブルクリックすると。。。 8
モデルの評価 ね、簡単でしょ? 9
便利な機能① アルゴリズムの比較 平行に配置するだけ。簡単! 10
便利な機能② GUIでのデータ抽出 混同行列の表示 表示したい項目を選ぶだけで、 該当のデータを抽出可能 11
ご清聴、ありがとうございました。 他にも話したいネタがたくさんあります 数式の前に知っておきたい、実務における機械学習の考え方 実務で使える Orange Data Mining の便利な機能
組織の基礎レベルを上げる R AnalyticFlowの紹介 意識低い系のデータ分析プロジェクトの進め方 構造で考えるDSプロジェクトの課題の選び方 研修って実際に役に立つの?DS”技能”教育のススメ など 今後もLTでいろんなお話をしていきたいです。内容によっては連続講座になるかも。 お気軽にお声がけください。 Twitter:@bunnchinn3 12