Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介/Expectations over Unspoken Alternatives Pr...
Search
Masato Mita
August 20, 2024
Research
2
400
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
Masato Mita
August 20, 2024
Tweet
Share
More Decks by Masato Mita
See All by Masato Mita
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
400
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
610
国際会議ACL2024参加報告
chemical_tree
1
550
広告文生成タスクの規定とベンチマーク構築(NLP2023)
chemical_tree
0
530
論述リビジョンのためのメタ評価基盤
chemical_tree
0
370
ライティング支援のための文法誤り訂正
chemical_tree
2
1.8k
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
120
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
90 分で学ぶ P 対 NP 問題
e869120
17
7.5k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
170
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
15k
数理最適化と機械学習の融合
mickey_kubo
15
8.9k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
数理最適化に基づく制御
mickey_kubo
5
680
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
Mathematics in the Age of AI and the 4 Generation University
hachama
0
160
Transparency to sustain open science infrastructure - Printemps Couperin
mlarrieu
1
190
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
2.8k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
960
The Pragmatic Product Professional
lauravandoore
35
6.7k
RailsConf 2023
tenderlove
30
1.1k
Building an army of robots
kneath
306
45k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Practical Orchestrator
shlominoach
188
11k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Expectations over Unspoken Alternatives Predict Pragmatic Inferences 1 2024-08-26, 第16回最先端NLP勉強会
Jennifer Hu, Roger Levy, Judith Degen, Sebastian Schuster (TACL 2023) 読み手: 三田雅人(CyberAgent)
スカラー推論( Scalar Inference;SI) • 話し手が言わなかった「暗黙の代替案」に関する語用論的推論 2 “Some of the students
passed the exam” 学生の全員は試験に合格していないんだな
グライスの発話含意理論 (論文に書いていない補足) • 語用論的推論は, 話し手と聞き手が協調性原理(coorporation principle)に則って会話するも のであるという仮定(格率に従う=協調性原理に従う) • この仮定を保つために, しばしば言語表現が意味すること以上のことを
, 聞き手が理解する必 要がある 3 [須藤’17]より 新グライス主義的SIの分析の例
SI率はスケール内( Within-scale)で変動する 4 Within-scale From [Degan’15]
SI率はスケール横断( Cross-scale)でも変動する 5 Within-scale Cross-scale From [Degan’15] From [van Tiel+’16]
問い 6 1. SIのスケール内/横断におけるばらつきの要因は何? e.g.) “The movie was good” →
The movie was not amazing. or The movie was not very good. 2. 聞き手は代替案に対して, 言語形式 or 概念レベルで推論するのか?
まとめ • 目的 ◦ 人間のスカラー推論(SI)に関する定量的・統一的な説明 の提供 • 方法論 ◦ 代替案に対する期待値ベースの説明
による形式化 ◦ 言語モデルに基づく文字列/概念ベースの説明モデルを提案し, どのく らい人間のSIを説明できるか調査 • 知見 ◦ SI率のばらつきは代替案に対する期待値によって捉えられる ◦ 人間のSIは表層レベルよりも概念レベルで行われる 7
期待値に基づく SIの説明 SIは文脈駆動な期待値に基づく代替案の可用性に依存する [Degan&Tanehas, 2015] 8 仮説 “Some of the
students passed the exam”
期待値に基づく SIの説明 SIは文脈駆動な期待値に基づく代替案の可用性に依存する [Degan&Tanehas, 2015] 9 仮説 “Some of the
students passed the exam”
期待値に基づく SIの説明 SIは文脈駆動な期待値に基づく代替案の可用性に依存する [Degan&Tanehas, 2015] 10 仮説 “Some of the
students passed the exam” Not all students passed the exam 話者が強い意味を伝えるために [STRONG]と言った可能性が高いのであれば, [WEAK]と発話する話者の選択は[STRONG]と言う根拠がなかったことを示唆 ➔ SIが生じる可能性が高くなるはず
代替案に対する「期待値」の測り方 11 • “X, but not Y” という構造における確率を測定することにより , スカラー関係に関する期待値を推定
• 言語モデルを使って人間の予測分布を近似する [CONTEXT] [WEAK], but not [STRONG], [CONTEXT]
代替案に対する「期待値」の測り方 12 • “X, but not Y” という構造における確率を測定することにより , スカラー関係に関する期待値を推定
• 言語モデルを使って人間の予測分布を近似する surprisalは意外性を測定するため , SI率と[STRONG]のsurprisalの間には負の関係 [CONTEXT] [WEAK], but not [STRONG], [CONTEXT]
代替案に対する「期待値」の測り方 13 • “X, but not Y” という構造における確率を測定することにより , スカラー関係に関する期待値を推定
• 言語モデルを使って人間の予測分布を近似する 文字列ベースのsurprisalは, その根底にある概念 の予測可能性を捉えられないかも? [CONTEXT] [WEAK], but not [STRONG], [CONTEXT]
代替案に対する「期待値」の測り方 14 • “X, but not Y” という構造における確率を測定することにより , スカラー関係に関する期待値を推定
• 言語モデルを使って人間の予測分布を近似する [CONTEXT] [WEAK], but not [STRONG], [CONTEXT] 概念的に類似した代替案で , surprisalが低いものが 多数ある場合, 仮に評価されたscalemateの surprisalが高くても, 加重平均は低くなる
Within-scale(<some, all> )のばらつきの説明 • Human SI strength ratings [Dagan, 2015]
◦ 1363 unique contexts for <some,all> scale • モデル: GPT-2 • 代替候補={every, few, half, much, many, most, all} 15 文の類似度を1-7で評価(数値が高いほど SIも高い)
Within-scale(<some, all> )のばらつきの説明 16
Cross-scaleのばらつきの説明 • Human SI strengths from 4 datasets [Ronai&Xiang’22, Pankarts&van
Tiel`21, Gotzner+’18, van Tiel+’16] ◦ 148 unique scale <WEAK,STRONG> • モデル: BERT • 代替候補:[WEAK]と同じ品詞を持つ単語(WordNet+NLTK + 頻度フィルター w/ OpenSubtitles[Lison&Tiedemann’16]) ◦ 形容詞1000語, 副詞960語, 動詞224語 17
Cross-scaleのばらつきの説明 18
まとめ • 目的 ◦ 人間のスカラー推論(SI)に関する定量的・統一的な説明 の提供 • 方法論 ◦ 代替案に対する期待値ベースの説明
による形式化 ◦ 言語モデルに基づく文字列/概念ベースの説明モデルを提案し, どのく らい人間のSIを説明できるか調査 • 知見 ◦ SI率のばらつきは代替案に対する期待値によって捉えられる ◦ 人間のSIは表層レベルよりも概念レベルで行われる 19