Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Dan Foreman-Mackey
May 08, 2015
Science
1
300
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
120
Open Software for Astrophysics, AAS241
dfm
2
510
My research talk for CCA promotion
dfm
1
760
Astronomical software
dfm
1
710
emcee-odi
dfm
1
640
Exoplanet population inference: a tutorial
dfm
3
440
Data-driven discovery in the astronomical time domain
dfm
6
700
TensorFlow for astronomers
dfm
6
780
How to find a transiting exoplanets
dfm
1
460
Other Decks in Science
See All in Science
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
130
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.2k
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
510
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
Explanatory material
yuki1986
0
130
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
230
学術講演会中央大学学員会八王子支部
tagtag
0
290
大規模言語モデルの開発
chokkan
PRO
85
45k
butterfly_effect/butterfly_effect_in-house
florets1
1
160
サメのはなし / How Sharks are born
naospon
0
2.5k
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
420
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
29
8.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
GitHub's CSS Performance
jonrohan
1030
460k
Facilitating Awesome Meetings
lara
53
6.3k
GraphQLの誤解/rethinking-graphql
sonatard
70
10k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Optimizing for Happiness
mojombo
377
70k
Statistics for Hackers
jakevdp
798
220k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions