Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【Ottertune】MLでDBを最適化するツールの紹介
Search
Hank Ehly
August 25, 2022
Technology
1
1k
【Ottertune】MLでDBを最適化するツールの紹介
Hank Ehly
August 25, 2022
Tweet
Share
More Decks by Hank Ehly
See All by Hank Ehly
Fivetranでデータ移動を自動化する
hankehly
0
550
Celeryの紹介と本番運用のTips
hankehly
0
750
ChatGPTを活用した 便利ツールの紹介
hankehly
1
1.2k
Efficient Energy Analytics with Airflow, Spark, and MLFlow
hankehly
0
280
Deferrable Operators入門
hankehly
0
570
【初心者/ハンズオン】Dockerコンテナの基礎知識
hankehly
0
470
Compositeパターン: オブジェクトの階層関係をエレガントに表現する方法
hankehly
0
290
10/29 Airflowの基礎を学ぶハンズオンワークショップ
hankehly
0
230
システム/データ品質保証のための Airflow 活用法
hankehly
0
560
Other Decks in Technology
See All in Technology
事業成長の裏側:エンジニア組織と開発生産性の進化 / 20250703 Rinto Ikenoue
shift_evolve
PRO
1
160
KubeCon + CloudNativeCon Japan 2025 に行ってきた! & containerd の新機能紹介
honahuku
0
120
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
940
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
5
4.5k
Github Copilot エージェントモードで試してみた
ochtum
0
130
AIとともに進化するエンジニアリング / Engineering-Evolving-with-AI_final.pdf
lycorptech_jp
PRO
0
140
AI導入の理想と現実~コストと浸透〜
oprstchn
0
150
製造業からパッケージ製品まで、あらゆる領域をカバー!生成AIを利用したテストシナリオ生成 / 20250627 Suguru Ishii
shift_evolve
PRO
1
160
AI専用のリンターを作る #yumemi_patch
bengo4com
3
1.9k
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
170
React開発にStorybookとCopilotを導入して、爆速でUIを編集・確認する方法
yu_kod
1
100
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
380
Featured
See All Featured
Visualization
eitanlees
146
16k
Gamification - CAS2011
davidbonilla
81
5.3k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Six Lessons from altMBA
skipperchong
28
3.9k
The World Runs on Bad Software
bkeepers
PRO
69
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Documentation Writing (for coders)
carmenintech
72
4.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Transcript
【Ottertune】MLでDBを最適化する ツールの紹介
自己紹介 • Hank Ehly (ハンク イーリー) • ENECHANGE株式会社 • qiita.com/hankehly
• github.com/hankehly • connpass.com/user/hankehly
アジェンダ 1. DBチューニングの問題点 2. OtterTuneとは 3. 営業とのQ&A
AWS RDSとは • マネージド PostgreSQL、MySQL、... • バージョン更新 / バックアップ等 自動化される
• デフォルトパラメータ • DBの使われ方に最適化されていない
DBチューニングの問題点 • RDBの費用を抑えて性能を最適化したいよね? (A) PostgreSQLの内部の専門的な知識 (B) 試行錯誤でパラメータ変更を繰り返し、最適化されるまで、パフォーマンスへの 影響を検証する時間 (私はどちらも持っていない) •
本来より高いクラウドコストを支払っていて、低いパフォーマンスしか出せていない
OtterTuneとは AWS の RDS と連携し、PostgreSQL と MySQL の設定項目を機械学習で最適化する SaaS プロダクト
1. 接続 • OtterTuneアカウント作成 • Agentをデプロイする 2. メトリック取得 • DB のハードウェア、パラメータ、メトリクス情報を 定期的に取得する • データやクエリーを見ない 3. 最適化 • ユーザーが設定した目標に向けて、 DB の設定を機械学習で最適化していく
①今この設定だよ ②多分これに変えたら パフォーマンス上がるよ ③どうする?
営業とのQ&A 1. どんな情報を取得するか • 数値、カウンター、レイテンシー情報 • PostgreSQL Statistics Collector •
CloudWatchメトリック(CPU使用率など) • クエリーの内容/スキーマは取得されません 2. RDSとどう接続するか • Agentをデプロイする(Fargate) • 公式 CloudFormation / Terraform
module "ottertune-iam" { source = "ottertune/ottertune-iam/aws" version = "0.0.6" external_id
= "***" } (Terraform)
営業とのQ&A 3. 設定変更によるダウンタイムはあるか • 設定変更によるダウンタイムは今まで発生したことがないそうです • 変更すると再起動が必要な設定はあるけど、事前に分かるもののみ 4. 日本語対応(ダッシュボード /
サポート等) ない 5. 設定変更は自動なのか、人がやるのか • どちらも対応している • 完全に自動化できる • 人間が変更内容を見てボタンクリックで適用することもできる(human in the loop と呼ぶ)
営業とのQ&A 6. 設定変更はどの頻度で行われるか • 調整できるけど、24時間に1回が推奨される • 大体20回目のイテレーションで、パフォーマンスチューニングがMAXに到達する
営業とのQ&A 7. どのくらいのパフォーマンス向上が期待できるか ワークロードによるけど、デフォルトの RDS 設定を使っている場合 5% 〜 15% は期待
できる
営業とのQ&A 8. PostgreSQL のバージョン変更したらどうなるか • 何もなかったように、新しいメトリック/設定項目を考慮範囲に含められるだけ • OtterTuneのサービスが途切れることはない 9. 設定変更によってパフォーマンスが下がったことはあるか?
• あるけど、最初の方だけで、ノイズに近い • 継続的な設定調整でパフォーマンスがだんだん悪くなることはない 10. でもお高いでしょ? • 1 db = $0 • 〜5 db = $450/月 • https://ottertune.com/pricing 11. 検証環境で学習させて本番環境に適用することは? • 環境によってワークロードが違うので、検証環境で学習させて、本番環境に変更を展開することはあまり意味がない
営業とのQ&A 12. どのDBがサポートされるか
13. どのパラメータを調整するか • autovacuum_vacuum_cost_delay • autovacuum_vacuum_cost_limit • autovacuum_vacuum_scale_factor • autovacuum_vacuum_threshold
• bgwriter_delay • bgwriter_lru_maxpages • bgwriter_lru_multiplier • checkpoint_completion_target • 等々 営業とのQ&A
ご清聴ありがとうございます